TONAL: ghT ON A Language

les of Artificial Philosophy

Contents

I[_Introduction

A Motivation

2_Influence]

3 Scope

4 TONAL Pentadynamics|

|5 Archetypes|

[6_Literals|

12

12

15

20

25

CONTENTS

....................... 44

44

48

48

51

......................... 54

MI Objects| 57
(11 Taxonomies| 57
(12 Conditioning| 60
[12.1 Atonalstatesl o - . . 0 0. .. 62

13 @jectives 63
4 TONAL hooks! 67
67

69

70

72

74

82

84

84

[15.4.2 Copy Construction|. 96

[15.4.3 Relaying|. 97

(15.4.4 Destruction|. 98

(16 Let-Name Lookup and Pruning 101

CONTENTS

124

......................... 127

129

131

132

132

133

134

134

135

137

147

[18.1 Supertonic Readers| . . .[. o . . O L. L., 149
[18.2 Supertonic Writers|0 152
[18.3 Supertonic Virtual|. . . .0 o0 Lo oo 153
[18.4 Supertonic Push-Outf 155
[18.5 Supertonic Include| 155
(18.6 Minor Form|. 156
(18.7 Submediant Forml 156
[19 Supertonic Let| 157
[19.1 Minor Supertonic Include| 158
(19.2 MediantPush-Inl 159
(19.3 Submediant Forml 160

{20 Minor Supertonic “()” (the list specifier) |

[21 Supertonic Grab|

CONTENTS

164

164

[25 Supertonic Loop| 170

[25.1 SupertonicStop| e 172

[25.2 Supertonic Next| 173

...................... 174

VI Control Jum 175
[26 Supertonic Trap| 175
[26.1 SubmediantForm|, 177
[27 Supertonic Trip| 177
[28 Supertonic Give| 178
[29 Supertonic Wait| 179
(29.1 Minor Form| 179
(30 Supertonic Goto| 180
[VIT_Generid 182
(31 LIskov-liKe Equivalence| 184
32 Mediant Func| 186

CONTENTS

186

(VIII Hyperspace| 187
188

190

191

193

|38 Hypertonic Type| 194
[39 Hypertonic Utf§| 194
IX Libraries| 196
{40 HYpertonic Present-tense E 196
ally Useful Things 196

{41.1 TONALIly Legible Data Representation| 197
[41.2 System Entities and Hypertonics Repositongf. 198
{41.3 Common Appliance Toolkit) . . ¢ o 0. 198
[41.4 Microcosm of Basic Input and Ou 199
|41.5 Future Extension Experimental Libraryl 199

42 Standards| 200

[42.1 ST units (International Bureau of Weights'and Measures)|. . 201

CONTENTS

42 11.3HDMIlo 212
4211 4USB[. .10 C 0 o . 212

BZITSEITA .| e oo oo 212
42.11.6X1ph.Orgl. | . .o 0 AL 213

..................... 213
A2IT8A0Medial « 213

42, 1VendOrs] e e e e e e 214
B2I2I0IMUX . . o o 214
......................... 214
[42.123Microsoftl 214
A212.4MacOosl 215

penMP|. 215

M2126Adobel0 215
MZIZTIIMI. . ..o 215
% B8OOI
229770 . . . o
[42.12.1BitTorrent

LIST OF FIGURES

4.1 The Pentadynamics of TONAL, and their interactions.|. . . . 25

|6.1 Railroad diagra or subtokens common to Real and Long |

...................... 35

TAIML| . v v v e e e e e 36

oram (continued).). 37

.................. 38

oad diagram (continued).| 39

|6.6 Atom Literal railroad diagram.| 40
|6.7 Qtom Literal railroad diagram.| 42
|6.8 Unpack Literal railroad diagram.|. 43
16.9 Skip Literal railroad diagram|. . ». 43
|6.10 Label and Comments railroad diagram.|. 44
[7.1 Tonic Form railroad diagramfe®™ n 45
[7.2 Dominant Form railroad @iagram, . . . 0. 46
{7.3 Subdominant Form railr lagram.. 47
[9.1 Major/Minor railroad diagram.| 50
[10.1 Supertonic Form railroad diagram.| 51
[10.2 Supertonic Form railroad diagram, =% 53
[10.3 Submediant Form railroad diagram... 54
[11.1 Values, Instances, and Objects, 57
[11.2 The composition of objects|0 oo 59
[15.1 TOWEL transfer diagram legend.|. 75
[15.2 Cooperative inward transfer|% 76
[15.3 Cooperative outward transfer| 79

[15.4 Cooperative object transfer|

[15.5 Round-trip, no transfer|.

[15.6 AM-supplied default construction.|7

[15.7 AM-supplied identity construction.|

RES LIST OF FIGURES

ommon process for explicit construction of multiple objects.| 88

[15.9 Common process for incidental construction of multiple ob- |
89
90
91
93

[16.13Dominant Search (continuee)f 119

[16.14Multiple Dispatch,

[16.15Multiple Dispatch (continued),| 121

[16.16Common elements railroad diagrams.| 124

[16.17Common Tensah elements railroad diagra

[17.1 Major Supertonic Func railroad diagrams| 129

[17.2 Major Supertonic Push-In railroad diagrams| 131

[17.3 Major Supertonic Pull-In railroad diagram. . .\ 132

LIST OF FIGURES

pertonic Push-Out railroad diagram.|. 132

17.5 Major Supertonic Include railroad diagram.. 133

[17.6 Minor Supertonic Func railroad diagram.| 134

[18.9 Relaying hook.,| 0.0 o 144

[18.105upertonic Readers railread diagramsy 149

[18.11Supertonic Writers railroad diagram|. 152

[18.12Major Supertonic Virtual oad diagrar.| 153

[18.13Major Supertonic Push-O 1lroad diagrams (key)|. 155
[18.14Major Supertonic Include railroad diagram.|. 155
[18.15Minor Supertonic Type railroad diagram.| . .a 156
[18.165ubmediant Type railroad diagram4e®. . .0 156
[19.1 Major Supertonic Let railroad diggrams.| 157
[19.2 Minor Supertonic Include railroadidiagrant|. 158
[19.3 Mediant Push-In railroad diagram. 159
[19.4 Submediant Let railroad diagrams.,| .% 160
[20.1 List Specifier railroad diagrams.|5 161
[21.1 Major Supertonic Grab railroad diagrams.|. 162

[21.2 Mediant Let railroad diagrams.|.

[22.1 Minor Supertonic Push-In railroad diagra

[22.2 Minor Supertonic Pull-Out railroad diagram.| 165

[23.1 Major Supertonic Eval railroad diagrams.|

RES LIST OF FIGURES

ajor Supertonic If railroad diagrams.| 168

[24.2 Submediant If raillroad diagram.| 170

[25.1 Major Supertonic Loop railroad diagrams.|. 170

onic Stop railroad diagrams.| 172

ic Next railroad diagram,. 173

oop railroad diagram.|. 174

¢ Trap railroad diagrams.| 175
................ 177

Supertonic Trip railroad diagrams,| 177

[28.1 Major Supertonic Give railroad diagrams.| 178
[29.1 Major Supertonic Wait railroad diagrams. 179
[29.2 Minor Supertq it railroad diagram.| 179
[30.1 Submediant GoTo railroad diagram.|. 180
[32.1 Mediant Func oA AINS.|. « v v v e 186
[33.1 Mediant Type agram.| 186
[34.1 Hypertonic F 3 ams.|. . ..o 188
[34.2 Hypertonic ret value reference railroad diagram.| 189
[34.3 Hypertonic argument reference railroad diagram.|. 190
[35.1 Hypertonic Infx railroad diagramJas 190
[36.1 Hypertonic Tool railroadddiagrams. 191
[37.1 Hypertonic Tune rail llagrams.. 193
[38.1 Hypertonic Type rallroad diageam| 194
[39.1 Hypertonic Utf8 railroad diagram. 194
{42.1 International System of Un yrary layout.| 201
[42.2 1SO Standards library layout}™. 203
|42.3 Ecma Standards library layout|. 204
2.4 TEEE Standards ibrary [ayout] 204
2.5 IETF Internet Standards library layeut} . = 205
2.6 IETF Proposed Standards library layout| . .\ 207
2.7 TETF Informational RFCs [ibrary [ayout] . &« b 208

10

LIST OF TABLES

mendations library layout.. 208

42.9 NIST Standards library layout.| 209

[42.T7/EITA Standards library layout]. 212
[42.1&i1ph library layout.,| oo L 213
{42.1Matroska library layout) e o0 213

|42.2000Media Standards librarylayout) 213
[42.21Linux library layout, . .Jo ol . N0 oh . Lo 214
|42.22BSD library layout, . . . 5 5 5 VR 214
[42.23Microsoft library layout,| - oo 0L oL oL 214
[42.24MacOS library layout,|. .0 o0 oo 215
[42.250penMP library layout,|. oL, 215
[42.26Adobe library layout.| L. 215
[42.271LM library layout,| @ 000 215
[42.280I library layout,|. o oA, .. Lo oL 216
[42.297z ibrary layout|. 216
[42.30BitTorrent library layout,| oo 216
[42.31SQLite library layout,|G oo, 216
[42.32Princeton library layout.,|0 o L. 217

List of Tables

[1 Al TONAL Archetypes|.

|2 Syntax Scale Degrees|

1 MOTIVATION

Acknowledge

Lisa Lippincott
Alexander Stepanov
Bjarne Stroustrup

Sean Parent

Partl

Introduction

Linguistics, botanics, physics, musi ience is what is left once we take

into account all the ways one can be

1 Motivation

The TONAL programming language tries question - what if

a language aims from the start to have compile-ti ogramming and

12

ng as its primary focus?
Why Tocus on compile-time and generic programming?
Performance is important now, more than ever, as software exceeds

the capability of hard grammers of the past wrote amazing pro-

grams on, ant achi are less powerful than today’s phones,
afe and unportable and unexplainable
shortcuts. Many 1 s trade performance for portable safety

and end up showi at it is imp e to put that toothpaste back into

the tube. As soon 3 anguage gains a slow feature, it gets used, de-
pended on, and thus becomes impossible to rollback.
Primarily focusing on compile-time and generic programming is to

force the design of the language t

perly solve the issue of high-level
programming, as it relates to pe e, rather than just kicking the
can down the street. Languages pile-time and generic pro-
gramming as an afterthought (o ompatibility reasons)

get the worst of all worlds. To that , TONAL airms to make compile-time

and generic programming so pr y, that it is indistinguishable from
normal programming.

Otherwise, if compile-time and generic programming is too hard to

use, programmers will find performanc to consider as de-

fault. Compile-time and generic program isrequired for performance
because it is simply faster to do whatever ile-time than

waiting to run the final program.

Good performance is good usability. Goo ility for compile-time
and generic programming is good performance.”TONAL takes after C++ in
its focus on reducing unnecessary overhead from the machine, but with-

out the constraints of C preventing a simpler syntax.

On the topic of usability, TONAL is not motivate es. Very

often, a new language has to reinvent bits of synta

13

1 MOTIVATION

inor things about the languages they’ve used. They’re usually
ad-hoc and special compiler only constructs that can’t be customized. On
the other side of the spectrum, like LISP, every high level feature is created

by macros on ompiler features, giving a programmer any option.

oduce features like range-for loops and structured

at allow the programmer to work their own types

- and customizable enough - to cover most code structures without re-
quiring macros. To achieve a look that doesn’t feel ad-hoc, the syntax is
programming - are ng ishable from the simple constructs. That
means forgoing the us ial characters commonly used in pro-
gramming languages, e in C++ shows that having a lot

of special characters makes it harderto write generic code that fits to-

gether syntactically. T us on compile-time programming means macros
arenotneeded, because generic function calls are not expensive at compile-

time.

In the early experimentati , from the syntax reduction

emerged the classification of ctical elements into the scale degrees
of music, particle physics and b yone who has had trou-
ble remembering the differences en declarations, definitions, state-
ments, expressions; parameters, a ents; would appreciate the diffi-
culty of trying to talk about code, 1 one teach it. While teachability
wasn’t an initial goal of TONAL, the effort to make performance, compile-

time and generic programming ergonomic, reducin x and special

characters, made it possible to pair synta ith corresponding

systematic names.

TONAL is suited to novices and experts alike. R than forced sim-

14

guages aimed at novices, that then requires experts to
work around limitations, it makes advanced language constructs of other
languages into regular constructs. TONAL aims to make novices into ex-

perts by providing a gen p to advanced concepts. Novices do not

remain novic emic language constructs stay around
forever, so the cing the power of a language.

A unified synt d experts means that rewriting of code
isreduced. Therei ical change from concrete, tweaked
code to abstract cod ake advantage of performance or compile-time
or generic programming. As novices become experts, their old code doesn’t
need to be discarded, but similarly as experts become experts in more lan-

guage features old and new, thei isn’t wasted. Novice code should

look like expert code should look paradigm code.

This lends itself well to back ibility, which is required

for any serious language. People ak other people’s code,

but not happy when their own code breaks. No lariguage can maintain a

critical mass of users if they leave due to regular breakage, so a language
must not break anyone’s code for a longer amount of time than the coding

style is used.

2 Influence

It must be said up front that TONAL is infl d most by C++. Syntax

doesn’t matter, but the mindset. The langua aped by experience.
C++ is not the best language, but it gets the job done, and the jobs run
faster. It doesn’t break your code just because a lot of vocal people hate

the features you depend on. It doesn’t add new features beca

popular at the time; mostly features with a dem

added - as libraries if possible. It doesn’t mandate

15

2 INFLUENCE

en tiered memory architectures.

C++ also represents decades oflearning. Any fool can create a new lan-
guage (eg, TONAL), but there is a treasure trove of knowledge gained from

practical, i experience that would be foolish to ignore. Plenty of

signers think that merely having a new language
syntaxes for printing, or for-loops, or declaring

avoid all the problems that plague any program-

that TONAL should regard itself as inheriting all those lessons.

TONAL should also learn from C++ its collaborative, disciplined ap-
proach to features bei ed, deprecated, removed, modified or re-
specified. Despite the s of design by committee, the C++ com-
mittees, composed of Groups that are charged with look-
ing into broad areas ider proposals coming from the
community, they do n sign proposals. There may be many compet-
ing proposals, but ulti y the one that is selected is one that plays well

with the rest of the language.

C++ is an international standard, wri in English, with multiple in-

dependent implementations erence implementation owned

by a single entity. TONAL ai utral, but taking lessons
from the C++ standardization ex should ultimately be de-
fined by a comprehensive, open, rative test-suite that tests for con-
formance as well as non-conforma nglish standards are imprecise
compared to test-suites and are often bogged down with incomprehen-
sible descriptions. The test-suite would need to be delicately curated to

avoid standardizing quirks of an implementation. implementors

may think they can monopolize the lan, dardizing their im-

plementation, but that actually works against the ey would be stan-

dardizing a quirk of their implementation that the hen be forced to

16

suppot y of backwards compatibility.

One of the major influences of C++, and inherited by TONAL, are the
principles espoused by Elements of Programming by Alexander Stepanov

and Paul McJones, andfFrom Mathematics To Generic Programming by

Alexander Sté , Rose. Every language claims to be de-

cially not into abstI . [guages eventually break from their
clean derivations an oduce widely used concepts in an ad-hoc way.
Even if a language is completely consistent to its core, it still remains the
challenge of programmers to build their programs from the core princi-

ples of the problem domain. Thi may not be compatible with the

language’s core principles; for ex t everything fits into one strict

type hierarchy. Instead, progra ould do what mathemati-
cians do - start with concrete, sp es/examples and then
refactor (by naming, splitting up generalize into a solu-
tion composed of parts that fit w bgether, but can be useful for other

problems and problem domains.

Instead of forcing programmers to adhere to s object model and

hierarchy, or worse yet, a framework, TO e lessons of abstract
algebra to help programmers do what th . Abstract algebra
is about what notation means and how it
programmers, of any language, are really j ating specific notation.
Whether that notation is implemented as obj unctions, design pat-
terns, idiomatic code - without special syntax - ideas from abstract algebra
gives a way to uniformly encode common rules about how that notation

behaves. The programmer is free to decide how to implement

tion because TONAL does not enforce any particul
the one paradigm to rule them all and be confident that t

language, and indeed 3rd party libraries, can easily interoper

17

http://elementsofprogramming.com/
https://www.fm2gp.com/

2 INFLUENCE

s of abstract algebra.

Programming languages are trending towards more functional styles,
because they have demonstrated, tangible benefits. Many logic bugs do

arise fro 2d side-effects, and functional languages on the whole

ut create new values from given arguments. In the
ows suit with the default immutability of functions.
o treat all functions as first class, in contrast to
ee functions are not the same as capturing
lambdas icit function objects) or full-fledged function objects. It cre-
ates a friction to writing generic code that needs to treat all function-like
things the same. TONAL follows the functional style by not differentiating

between free functio

ometimes stateful) function objects. That is
the minimal language needed (or rather, it gets out of the way),
and from there, funct ition can be implemented in libraries

with no cost.

Functional progra g leads very well into declarative style pro-

gramming languages. | LISP and XML use S-expressions. S-expressions
merely express the structure of a program, and the program processors

are then free to traverse that structure and.dnterpret the meaning and ap-

ply transformations eg, code ge cro expansion, optimizations.

C++in fact can also use S-expr s, a technique called expression tem-
plates, in order to encode com evaluation. That allows
for whole expression factorizati e that in maths which then leads
to optimization opportunities that ven take into account hardware
capabilities.

Declarative style is all about intent, which is more about what code

means to us than what it means to the machine.
most in the frontend of the language whi the high level con-
structs impose conceptual structure - structure th sn’t actually exist

in the bits and bytes of computer architecture. Int OWS a program-

18

understand what a program is supposed to mean, and
notjust a series of instructions to blindly follow. High level constructs that
reflect intent can be eliminated from the eventual program due to guar-

antees about progra our that cannot be inferred from low level

code. For ex nctions - sometimes called coroutines
in other langua ized away, in contrast to manual jumps
and state-machir often achieved with messy macros) to

emulate a resuma i e anguage has no idea about.

Inrecent years, 1 age design has placed a lot more emphasis on de-
faults. When it comes to intention, the non-specification of an intention
says just as much as specifying an intention. C++ is mutable by default,

unless specially marked; Rust i

table by default unless specially
marked. Both have their reaso naintains semantic backward
compatibility with C, whereas Ru hat it is often safer to make
things immutable and so doesn’ mer go out of their
way to specify the common optior faults represent the common inten-
tion. Like C++ but without the C wards compatibility (or in fact C++
backwards compatibility), defaults are chosen that can be implemented

with zero overhead, or can be eliminated when given compile-time infor-

mation. As it so happens, this also mean s are those which

are safe, because zero overhead can onl chieved with compile-time
information; an understanding - by the co h level guar-

antees of a feature.

Query languages are prime examples of ages all about intent

- what we want to find, but not how we find. “XQuery FLWOR expres-
sions are something that influences TONAL as a design goal. The lan-

guage should be powerful enough to build up to things like FL

SNOBOL4 pattern matching is the other major de ence on
TONAL. Regular expressions are not powerful enough - hamp y heavy

use of symbol characters, and there are too many different rs of

19

3 SCOPE

e SNOBOL4 has only one de-facto standard. Both XQuery FLWOR
and SNOBOL4 pattern matching have the benefit of being embedded in
an actual programming language, so we know that there isn’t much of a

barrier to img ating it as part of a programming language instead of

)cessors to generate code.
rprising influence on TONAL is the graphical for-

mal sy age DRAKON. Ergonomics is an important aspect

the surface, very simple, but heavy reliance on macros, many different

ways to declare variables, and a proliferation of mini-languages. And of

the fluid nature of sof C pment without being inundated with
large criss-crossing di
has relatively few pri et of powerful layout rules that
make it easy to create readable diagrams. In a similar way, TONAL avoids
the extremes of LISP and C++ and chooses primitives that covers every

aspect of successful languages with minim

Ergonomics is also a concer ing for third party tooling.
The simpler a language is to , especially without the text transfor-
mations hidden by macros, the iti yone to whip up a quick
tool to get whatever informatio ed from source. It would also
make it easier for implementation ip tools when there is a common,

non-technical, vocabulary that capt 11 aspects of the language.

3 Scope

An important question for all implementations of mminglanguages

is: what should be left out?

20

Ca leave it out? Can we find a way of bringing it back in

later?

What can’t we bring back later? What can’t we afford to leave out?

that is hard, i ret back once it is lost. Backwards com-
patibility requ p at languages cannot change slow fea-
tures that are wic n if they eventually get changed, exist-
ing systems can’t & ompiled and redeployed without
extensive testing.

Influenced by C and C++, a was discussed in on page

TONAL must take into account, and take advantage of, the reality of phys-

’t bring performance back later.

ical machines. Machines have si its, and size limits affects perfor-

mance, whether it is data size, o The smallest size is zero. Any
code that can be executed at co can be discarded. Any
temporary data that can be comg e can be discarded.
Information that is lost to the rur e cannot be recovered, such as the
exact type and therefore exact siz ustn’t be left to run-time dispatch
just for the sake of polymorphism. We can’t afford to leave out any generic

programming.

Data that we can’t discard must only u ze thatis necessary,
which may not always be the smallest if t re performance gains to be
had for alignment correctness. Therefore, est of the lan-
guage, we must have a rich library of machi es. There are many dif-
ferent types of machines, now and into the fut ut if we have compile-
time programming, we can cater to these differences with normal pro-
gramming. We can’t afford to leave out compile-time programming with

machine types.

Machines have memory, but they don’t collect

garbage that programs generate. They don’t even have th

garbage memory. Any notion of used and unused memory is

21

3 SCOPE

acked by alanguage for correctness. The only way a language can
keep track of when memory can be reclaimed is for the programmer to tell
it. We can’t afford to leave out ways for a language to automatically track

memory at_ce ime; a way for a programmer to tell the language

o manually. We can afford to bring back later a
eeps track of memory at run-time. By necessity it

omatically tracked memory - there is no way to

tional and not. Experience shows us, however, structured forms of jump-
ing, like loops, branches, and named jumps, local and non-local, gives a
language more informe bout the intent of a program, and so more
opportunities to run t ompile-time. So we can’t afford to leave
out the basic traditio ontrol flow, but we also can’t afford
to leave out other cont ile requiring a lot of code genera-

tion in most instances, d1f executed only at compile-time.

More expensive ma es have hardware threads, multiple cores, sep-
arate processing units, or working in a cluster. They are not always avail-

able and involve unpredictable flows, so there aren’t many;, if at all, mean-

ingful structures we can reaso mpile-time. These are things

that can be added back later a -time libraries, but the language itself
can at least define a consistent atform specific features.
This is where compile-time progr g facilities help because platform
features can be enabled, selected, moved at compile-time without

special syntax.

Any high level features that can be implemented with the language - ie,

in language libraries - in a fashion that allows use e-time should

be implemented. In a way, we can’t affo em out, as they can
build on each other at no cost and so a lot of adv. features come for

free. If they were to be left to be implemented a fterthought, we

22

e issue of trying to claw back performance in ways
that break backwards compatibility. It is better to have these features at
compile-time, even if their run-time performance is slightly slower, be-

cause compile-time me n-time cost, and tuning for run-time will

always be reg

The features ating system support can be added back

later as run-time annot be purely implemented with the

While influenced ISP and functional styles, as was discussed in
[nfluence] on page [I5] nevertheless TONAL does not share the same ob-
session with any single concept - macros, purity, call-with-cc, monads.

TONAL hedges its bets on compi and generic programming and a

syntax that is unified for both the e necessary power to achieve

what all those features are capa ple, macros are used to
re-order source code without ha at the point where the
macro is invoked, in order to all domain-specific lan-
guages. With compile-time and g¢ ¢ programming, something akin to
new syntax can be created with compile-time values at no cost to run-time

performance. We can afford to leave out macros, andswe can afford not

bringing them back later.

Obsession with purity of any form is use of many of the world’s
greatest atrocities, so TONAL does not pa i ession either.
Modifications of things in-place is a fact of lif ereducing side-effects
has real benefits in reducing errors and even ove performance, the
hoops to achieve statefulness continues to be ajor turn-off for func-
tional styles of programming. Programmers see all the effort to use state-

fulness in a functional style and see imperative style language no

effort to do the same; to do the thing that programs, , heed to

do the most often.

We cannot afford to leave out statefulness, but at the sam can-

23

3 SCOPE

d to leave out functional styles. Most code should be written in
a functional style - immutability by majority (not default), and composi-
tion of functions to make higher-order functions. Stateful programs have

a whole ho i er issues, such as aliasing, concurrent modification,

AL solves them with explicit marking of mutabil-
nabled by compile-time programming. Mutability

guage, so is something that must be implemented

to enable such flexibility.

The experience of C C++ compared to other languages shows that a
proper module system needs to be designed from the beginning. Compile-

time and generic programming introduc mplications for modules since

alot ofinformation needsto b 0ss a whole program to take ad-

vantage of the flexibility and p eparation between mod-
ules needs a way to share info them without the high
coupling of textual substitution. ch solution would be to generate
intermediate files and caches. On f that, traditional build systems
operate on text files with no knowledge the semantics of the files and
special support is required for any language specific intermediate files.

At the very least, we can’t afford to leave out mod ause they set

the limitations of the language via the r of implementation.

Build system support we can bring back later, as i 1d depend on how

modules could be implemented.

24

uncoupled

AN

/ \

\
_ _ _ _!_overload_ _ _ _ _
/

\

g >.

; =

\ > ~ \ 7 !
\ ~ - /

) / O /
(o /\E;\\ ‘\E‘
_% O o)
A <

coupled

abstract <

Eboftware engineering can be described as managi

> concrete

plexity by divide-
and-conquer. Many techniques, syntaxe ophies have been in-
vented to solve the divide-and-conquer m. Many claim to provide
the ultimate paradigm to the divide-and-c

Languages traditionally classify capabiliti elonging to a paradigm,
like “object oriented”, or “functional”, or “pro al”, or indeed “multi-
paradigm”. The Pentadynamics do not constitute a paradigm, but rather

highlights the main organizational forces pulling on programmers when

IThis section uses metaphors and real-world analogies in order to get ink
about how each dynamic is materialized, rather than how they’ve y im-
plemented in compilers or interpreters. This section is about t should be

applicable to experts and novices alike, so it should avoid getting
mentation details. It also prevents the language being tied down to any sin,
of the dynamics, and leave room for them to be implemented in many ways,
be interpreted to include different features or different usages of features.

25

4 TONAL PENTADYNAMICS

and conquering. The Pentadynamics also interact with each other
as divide-and-conquer strategies sometimes complement each other, and

other times at-odds.

and the problem space pulls on the design of a so-

tions. Therefore divide-and-conquer strategies do
sle Pentadynamic, with each Pentadynamic naming
a design is pulled towards, rather than strictly

d boundaries. These are highly overlapping

Language features are usually invented ad-hoc to solve a real, but lim-
ited, coding scenario, and thus are permeated with all of the Pentadynam-

ics to varying degreesg] is opposed to trying to invent features based

on theoretical concerr eatly within categories but are useless

inreal code. Real code ized multiple ways at the same time,
and can even change orization according to its interac-

tions with, say, develoj

Compose - music anf biology are endlessly complex constructions. Lim-
ited rules operating on self-contained units can build up symphonies and

ecosystems. The most uncoupled systems are compositions of non-overlapping,

non-communicating processe their own thing in their own

time, but are useless. Achievi jectives always requires some kind of
coordination between parts. On lly used in abstract, and
concrete ways; much like music 1 d on abstract theory, and biology

deals with the tangible.

General - water has many differerit uses, but comparatively few ways
to contain it, or transport it. Water vessels either have a bowl or a hole,

and made of non-porous materials; the designs of re also appli-

cable to other fluids because it is possi ize on common at-
tributes. Rivers become pipes; lakes become bow. neralization blurs

the sharp realism into smooth abstract forms; thei aces can join to-

26

0 much interlocking and becoming stuck.
Special - alump of rock can be chipped and carved, clay can be moulded;
specific tools forged for specific tasks. Material concrete is the metaphor

by which specialized nts in software are described. Tools need

to be reusabl esign - must be reusable, even if a tool
ot be so intertwined in the final product
itself as to beco aduct, by definition, otherwise they’re
just components o 0, such components need not be
melded.

Inherit - fire burns with oxygen; energetic oxygen chemistry made eu-

karyotic life, and multicellular life, possibleﬂ The combined abilities of

the mitochondria ancestor and an

at-undiscovered prokaryote ances-
torﬂ gave rise to great and robus physical forms. Inheritance is
not merely concrete physical rep the abstract intertwining
of information itself. Inherited s ighly irreducibly com-
plex; very difficult to decoupleﬁ

Reflect - mirrors are used to 1 at things from different angles, in-
cluding the self. The greatest power comes from being able to change

oneself; changing oneself requires being able to look at the self. Chang-

ing the self without discipline or principle gile development.

A strong foundation guides developme well-defined self but with
flexibility and dynamism over time.
Composing generalizations - the bounda ere compositions hap-
pen define a set of general expected behavi y components that
can spoof those behaviours can be used at thos
Composing specializations - where special cases exist in general be-

haviourial requirements, special components can exploit acu

edge for better performance. Special components ¢

Zhttps://doi.org/10.1073/pnas.96.23.12971
3And speculatively, possible separate ancestry of other organelles.
4https://www.talkorigins.org/fags/comdesc/ICsilly.html|

27

https://doi.org/10.1073/pnas.96.23.12971
https://www.talkorigins.org/faqs/comdesc/ICsilly.html

4 TONAL PENTADYNAMICS

, implicitly or explicitly, to special cases.
Inheriting generalizations - generalizations can be formalized to al-
low indirect fulfillment of the requirements. Adaptor specifications can

be specified ponent interfaces and stable protocols, and imple-

are reified into rules and strategies for finding better fitting solutions.
Generalization and specialization - unified by overloading. One name
can be used to establi ation between multiple incarnations of the
same underlying noti e generalizes a notion, while parame-
terization specializes.
Inheritance and r y structure relaying. Many fa-

cades can reuse a str e, especially if they’re related. Once a facade

is obsolete, the subse facade can be re-layed on the structure. The
structure is relayed from one stage to another: the runners change, but

the baton remains the same.

Composing inheritance - e eal world fit many categories;

exhibits many disjoint and ble ehaviours. Categories and behaviours
be can be mixin to the one obj used in many different
contexts just like real objects can.

Composing reflectively - compo , by and large, do not assemble
themselves. Components define their internal structures, and what is
needed to create those structures, but materials come from the outside.

Entities build components from looking at a detai n, source the

needed parts, and inject them into corre
Generalize reflections - images of static obje reproduce great

amounts of detail, devoid of motion blur. Such ima ve limited infor-

28

likeness of how an object behaves.

Specialize inheritane st knowledge comes from the future, so not

all paths can e present. Paths can, however, be pre-

ordained for li of known possible cases. When actual
cases are encou e and classified, they are dispatched

to the path most sy i [ategories.

5 ARCHETYPES

t of as a language to control a program called a
piler can be thought of as an interpreter that pro-
ds to execute instructions and produces a program

s tells the compiler to do things such as define

parameters and the command sequence of that function; and so on and
so forth. TONAL does not make a distinction, or give nomenclature to,

statements, compoun ents, declarations, expressions, definitions,

lvalues, rvalues, glva ues, xvalues. TONAL commands are all

there is, whether the compiler to make a definition, or to

invoke the definition. ial difference in terms of syntax.

5 Archetypes

Table 1: All etypes
Flavah Generation |,
Scalah real
Vectah
Tensah

TONAL programs are structured a six Archetypes. They are called
Archetypes because terms like fundarmental datatypes only typically cover
types that fit into registers. TONAL instead has the concept of Archetypes

because every thing in TONAL patterns after them. d Types them-

selves can now fit into scheme without quirement of being

machine representable. They are, after al nstructs to create

meaning where there isn’t any - they’re purely for rogrammers.

30

ot imply any derivation hierarchy. They are merely
archetypical of every construct in TONAL. There is no common object
that everything inherits from, because it doesn’t make sense and is un-

necessary. It would ju attempt to artificially shoehorn everything

into one thing fee 1t and tidy but doesn’t provide any real
benefit. Arche one aspect, in that they are all treated
as things that a | anipulate, instead of a subset being
things and anothe ing'¥ descriptions of things.

One way to think t the Archetypes is along two lines of general-
ization - flavah and generation. They are a bit reminiscent of the standard

model of physics, which is a nice coincidence to help with memorization

recall.

Scalah Archetypes are dimens ues. They are single units and
the most fundamental of the Arc

Vectah Archetypes are one di e of values, which are
themselves values that can be put other values. They generalize Scalah
Archetypes by extending what c be represented through permuting
Scalah value sequences.

Tensah Archetypes are those for which we define their meaning and

build upon other Archetypes to create ne ures. They gener-

alize Scalah and Vectah Archetypes by s ing custom behaviours and
representations that are not as fixed as th
Generation I Archetypes have a discrete ; either a limited set of
values or functionality. Like fundamental pa , they are the lightest
of their flavour.
Generation IT Archetypes have, ostensibly, a continuous domain (sub-

ject to machine representation, of course); a continuous set o

open ended possibilities of functionality and repr ey are
conceptually heavier than Generation II Archetypes.

The Long Archetype represents integer numbers, as in t et. It

31

5 ARCHETYPES

east base 2, 64-bit 2s complement representable numbers.
The Real Archetype represents real numbers, as in the R set. It holds

at least IEEE-754 binary64 representable numbers.

of values; it is merely as if the sequence of values were written by the

programmer each time. Lists are themselves values. The values in a list

may be future-tense.

The Func Archet ubprograms that can be invoked with

Zero or more paramet zero or more let-name views from its
environment; may be umed; may trip conditions.
The Type Archetyp fines a permutation of sets of values, their in-
variants and valid op ons; may grab zero or more let-name views
from its environment; may be derived from other types. Every type and

Archetype has a type.

It may seem strange that a ented language would omit the

mainstays of other machine-o d language, like pointers, enums, bit-
fields and unions. Perhaps they ed into something like a
Generation IIT Archetype. But th d be going too overboard. There
is no argument that they are essent writing code that squeezes more
performance when required. TONALakes the case, though, that due to
their highly machine-specific nature, they are better implemented on top

of TONAL to take advantage of compile-time pro g, which will

then make explicitly available all the ma so that physical de-
sign decisions can be made programmati

Consider pointers. Memory architectures have e flat for a long

32

he unused segmented memory feature of certain pro-
cessors.” There are variations in cache architecture; the availability of
coprocessors like GPUs; expansion peripherals; networked distributed

systems. Direct me 2ss over all these systems is thus a much

more complic erating-system provisions like memory-
mapping mak end to have a flat address space. Safety
issues with poin - most commonly out-of-bounds access
in various guises ot derived from initialized mem-

ory), and leaks. Gark ollection may also come into play.

All of these issues argues in favour of a more rich abstraction over

pointers, but without unnecessary overhead, so that programmers can

handle these differences instead

actually programmatically encode
ofrelying on documentation, co d imprecise checkers. Expos-
ing some of these details allows p 0 programmatically make
design decisions taking into accc and flexibility without
sacrificing performance.

Bitfields and enums can actually be implemented as library solutions
now that we have a language in TONAL that prioritizes undifferentiated

compile-time generic programming. Unions are more©f a challenge, but

again, with undifferentiated compile-ti ogramming, some
options are open that were not available

time tracked unions in addtion to traditio

Archetypes are how TONAL realizes undi
programming. Archetypes behave just like an r object, but a TONAL
compiler knows the value of Archetypes. All Archetypes must have val-
ues known at compile-time, but values of other types can also be used by

the compiler for undifferentiated compile-time generic pro

they can be converted to and from Archetype valu es makes
the undifferentiated possible by using value semantics ins f using

syntax and type-system tricks.

33

ative unions, such as compile-

tiated compile-time generic

6 LITERALS

Literals are the syntax etype values into TONAL pro-

grams. Literals are co ous sequences of characters that have no syn-
tactic substructure that can be edited without changing its value (other

than padding zeros for numbers).

The Literal Archetypes are Long, Real, and A/Qtom. In TONAI, space

characters are reserved for separating individual to ource. There-

fore only Qtoms are an exception, and ny space character.

Quotes, apostrophes and parenthesis are d to be separating

characters.

34

»»— radix

»»— radix —@—N

xdigs

"L
sign

oad diagrams for subtokens common to Real and Long

separator

(>

L separator |— ddigs

0-9]]
L separator |—
drad S

xdigs

Y

"L
sign

xrad }—

xdigs

35

«?
A

6 LITERALS

zrad

[>—]

radix

Zrad

[

radix

Zpad

Figure 6.2: Long Literal railroad diagram.

bdigs

separator

I
bdigs

separator

I
odigs

36

L separator

T
— zdigs

»d

separator |—

Zdigs

e

6.3: Long Literal railroad diagram (continued).

>> L ddigs >«

pp— zrad |— zdigs

»»— Zrad |— Zdigs

long ——»«

long2

L

long8

long10

longl6

long36

((((((X

long64 |

Long literals can be negative or positive. They can be bi octal,

37

6 LITERALS

, hexadecimal, base36 and base64. Decimal is the default when
no radix is specified. The default digit separator, a comma, can be used to

break up large numbers for readability.

decimal

rexp.
P»— dexp

ddigs
L sign —j

rdec
p»— decimal |— ddigs [—»><4»»— decimal

38

6.5: Real Literal railroad diagram (continued).

real
»»— long rdec >
reall0
»»— longl0
reall6
»»— longl6
rdecl6

reallit

real

reall0

reall6

Real literals can be negative or positive. They can be decimal or hex-

adecimal. Decimal is the default when no radix is specified. Th

is decimal, but in powers of 10 for decimal, and po
imal.The default digit separator, a comma, can be us

numbers for readability.

39

6 LITERALS

Figure 6.6: Atom Literal railroad diagram.

segse achar
»—@-»4 "0\

=l

Atoms can contain
character. Atoms can
to refer to objects witl

reserved by TONAL.

(6.1)

(6.2)

(6.3)

(6.4)

leaf =e

bud = .e (6.5)

40

stem = a.b, or a.b.c, or a.b.c.d (6.6)

orc.d, orb.c.d (6.7)

.e, orb.c.d.e (6.8)

By far the most natural way to structure information in computer sci-
ence is the tree. The shape of botanical trees are a natural way to visualize
hierarchical relationships between information. Cladistics and program

structures naturally are organize ame way.

Computer science has mostly
mathematical terms, because ma

the tree metaphor and botanical t Atomy less abstract.

The nodes[6.2of an atom[6.T|are1ike the nodes of a plant that are points
along the plant where structures sprout from. The root[6.3]does not have

nodes preceding it, while the leaf|6.4]is at the ve just like they are

in plants. A bud[6.5|grows out of a node

A stem[6.6]is a root with nodes budding times before

theleaf. Abranch[6.8]is any node thatis not ing any number of
nodes up to the leaf. Alimb|6.7)is the common fastemand a branch;
that is to say any non-root nodes budding up a ber of times before

the leaf.

Most atoms in code will technically be branches because
contextually implied. The branch/limb/stem distincti s to talk
about the parts of an atom without having to clari ere is a

root/leaf node or not.

41

6 LITERALS

O

Figure 6.7: Qtom Literal railroad diagram.

()
@)
308
-

-
-0

\

le]
o

™\

-] =
Qo
=

=y
()
=
3

(0-9]

[A-Z]

[a-z]

Touge

Y

delim

qtail

delim qtail |-
qcharst
qraw 42

2
~—t
QO
=
‘ .

3§49
o
Bé"é

—

differentiate between characters or strings as in other
languages. All unicode characters are valid in TONAL, so they can be used

in Qtoms without hexadecimal codepoints. Qtoms are immutable.

Qtoms can be ra -specified delimiter; so they can contain
the Qtom quo) 3 haracter without escaping. Raw Qtoms
that contain for i data, like regular expressions, can use
the user-specified ify the syntactic engine for 3rd party

tools for validatio ocomplete etc. The delimiter can be

Figure 6.8: Unpack I railroad diagram.

unpack

atom

qtom

list

Unpack is the only literal allowed with m . They are used to

specify pack-parameters, or to expand a ent packs or lists in place.

Skip is used to explicitly skip the rest of the cur empty)
pack-parameter, or to skip the current defaulted paramete e next

parameter.

43

and Comments 7 TONICS

abels and Comments

Figure 6.10: Label and Comments railroad diagram.

And because Labels are just Qtom literals, they are also just Comments.

It comes full circle, Labels are just Comments, and so both should be de-

scriptive.

Having Labels as Q as part of the regular syntax, also means

that there is less fricti e language and special documenta-
tion syntax used for g ntation. External tool support is

not an afterthought.

Labels and Comments can be placed anywhere as they are ignored by
the compiler for the most part. Labels that are jumped to are preserved,

and so may only be placed in certain s in Tonics that can actually

be jumped to. For example,d 0 sense to jump to a parameter

definition.

7 Tonics

Anything in TONAL that is not a literal is a command. All commands are

girt by parentheses, so technically, a Label Literal i a command,

but they have no other role than pure s are no other delim-
iters used for nesting, so all those characters are able to be used in

Atoms.

44

igure 7.1: Tonic Form railroad diagram.

real |—

atom |1

qtom |

label |—/

(((((X%F_)Té

tonic |—

tonic

[— subject —]
verb

The main form of a TONAL command is 1 Tonics have

two main positions - the Verb, and the Subje terals in the Verb posi-
tion are called Verbs. Literals in the Subjects
They are usable interchangeably. Verbs are doing words, which tells a
TONAL compiler what to do. The Subjects controls what the Verb does,

beyond just what word is the verb.

All commands follow the basic Tonic form, with
ing on the verb and subjects. There are no special syntax

that are present in other languages, like compiler directives, s, at-

45

7 TONICS

, generics, annotations, formatted comments, manifests, service
connector definitions, build files, etc. From here on, all syntax diagrams

for any of the scale degrees will omit the opening and closing parentheses.

able 2: Syntax Scale Degrees

Do Tonic

Re Supertonic

Mi Mediant

Fa Subdominant
Dominant

Submediant
Subtonic

The Tonic form is so-called because it has an analogous function in
TONAL in that it sets the tone for the rest of the language. Tonic is used
within TONAL in a fe In a general sense, it refers to all forms of
TONAL commands, b ic scale degree; but in discussions with
the other forms, it re ds that are not the other scale de-
grees. The other form pt, or very not, analogies of the

seven scale degrees.

Figure 7.2: Dominant Form railroad diagram.
subdominant-verb

»p— atom |»<«

dominant-object

> atom _O T

object-verb
pp— dominant-object

dominant

(subjects j
»»— object-verb

The most dominant form of command in TONAL

Dominant form,

46

the Verb is an atom in the form of a path. The Object
position’is the atom path all the way up to the final dot, and the Verb po-
sition is final atom in the path. The dotted notation is familiar to all pro-

grammers by evoking ject-Oriented paradigm, which is the most

dominant pag re industry and feels completely natu-

ral with the OF encing some enclosing context for the

Verb.

Figure bdominant Form railroad diagram.
object

»»>— subject >«

subdominant

subjects —]
>«

»»— subdominant-verb

The Subdominant is not as do ant a form, but belongs to the same

Object-Oriented paradigm as the inant form. The first Subject serves
as the Object in which to try to find the suitable Verb, just like the Object

part of the Dominant form’s Object-Verb. If the Object.doesn’t enclose the

Verb, or there is no Object (and therefor , then this is just

a Tonic and the Object is whatever enc he Verb, when it is found,

starting from where the Tonic is invoked.

The Tonic, Dominant, and Subdominant entially the same form

with the same purpose - invoking a func. T er forms are special
syntactical forms with meanings defined by th NAL language and so

will be discussed in their own sections.

The terms Dominant and Subdominant may also applies to
the same format as their Verbs, but not in the Verb pgsi e context
of such usage, use Dominant Tonic and Subdominant Tonic t

Tonic instead of the Atom literal.

47

9 MAJOR/MINOR DISTINCTION

ores - Keys, Bars, and Clef

A musical score, in overly general terms, is a composition that has a clef, a

and bars. A clef delineates the beginning of the score. The

lered in its entirety, and simultaneously across all
ructure to the notes. The music plays through the

s. There may be repeats. There may be jumps to

code. The body of a function or the block of a scoping keyword, like if, for,
try, etc are compound statements. The program’s execution progresses

through these statement e body of a class is compound statement and

member declarations essed before their definitions.

TONAL uses the bhors of keys, bars, and clefs to avoid
ambiguity and overloz The clef uses the empty list syntax
to visually distinguish demarcate preamble from the sequence of
tonics that make up th plementation.

Keys are the sequence of tonics following the clef that are the TONAL

equivalent of the body of a class in languages like C++.

Bars are the sequence of tonics e clef everywhere else that

are the TONAL equivalent o ody of a function, or the compound
statements of scopes. However, not only limited to bars.
Even keys have bar-like semant e cases, just like how musical

scores can have key-changes.

9 Major/Minor Distinction

Take the equation:

y=azr+b 9.1)

48

INCTION

ay have a few equations:

y=azx>+br+c 9.2)

) + cos®(6) 9.3)

Are they stat eclarations? Are they expressions?
Are they sub expre ? itions? Are they compound state-
ments? There are m ifferent terms in many programming languages,
with subtle differences between them, often based on how their grammar

is specified or what their compiler’s frontend parser calls them. To peo-

ple writing programs, it doesn’t difference what they’re called.

They look like what they look 1i s that look alike should be-

have alike.

In primary school, we learn MDAS/PEMDAS. Pro-

gramming languages extend the r-of-operations with language spe-
cific operators, but the principle i ame. Some calculations take prece-
dence over others and their result is unofficially remembered while the

rest of the calculations are performed.

In the equation [9.2| on the current p ax? gets processed
first. In that term, the 22 term gets proce . duces a value
- that doesn’t have its own name - which oduct with a
to produce yet another anonymous value. alue of 22 can now be
discarded. Then the next term that gets pro is bz, producing yet
another anonymous value. There are now no Tnore exponents or mul-

tiplications to process. The next term to process is az? + bz using the

anonymous values that were calculated, producing yet anot
mous value. The values of az? and bz can now be_di he next
term to process is az? + bz + ¢, using the anonymous values t ere cal-

culated, producing yet another anonymous value. The value

49

9 MAJOR/MINOR DISTINCTION

be discarded. Finally, y = a2? + bz + c is processed, giving the

anonymous calculated value the name of y.

Then we move on to the next equation [9.3 on the preceding page, do

according to specific ordering rules, to be used for an overall
equation; the other pattern is the calculation of full equations themselves,
one after the other. In fact, in the example given, because equation|(9.2{on

the previous page anc on [9.3) on the preceding page do not share

any references to na es, they can be calculated out of order,

which is a fact that cc rocessors can take advantage of to

speed up calculations.

TONAL gives name nly these two patterns of code, which reduces
confusion due to many terms that mean similar things that have no bear-

ing on what programmers actually think about.

Figure 9.1: Ma nor railroad diagram.

minor-tonic

pp— verb minor-tonic

major-tonic

»»— verb minor-tonic

body-subtonic
»L major-tonic J—N

a0ther components of the Tonics are omitted for clarity -
between major and minor only.

trate the relationship

50

D SUBTONICS

perations for languages like TONAL is specified by this
acronym - P. P stands for Parenthesis. Parenthesis (ie, Tonics) are always
processed first, and in a left-to-right order. Tonic subjects that aren’t Ton-

ics are either names o 50 they are already processed. Every Tonic

onic. Major Tonic refers to an unlimited
sequence of To) some processing and the final value is
ignored, or are S ding but not limited to those that bind
a name to a value y in a Subtonic called a body in
certain declarative ¢ trol flow Supertonics.

The Major and Minor nomenclature recalls the music theory theme,
but has a hierarchical relationship compared to the musical function of

major and minor keys.

10 Supertonics and

Figure 10.1: Superto orm railroad diagram.
keyverb

pp— subdominant-verb >«

supertonic

»»>— keyverb [L atom

subtonic

Supertonics are Tonics with special powers through the magic of Keyverbs.
Not keywords, but Keyverbs. Keyverbs are Verbs with predefined spellings.

TONAL does not have the concept of reserved keywords tha

guages have, in order to give programs more freed g things.
Keyverbs are Verbs, so they are only reserved for the Verb po

keywords, which are reserved regardless of where they are u

51

10 SUPERTONICS AND SUBTONICS

Subjects of Supertonics are words in specific positions in the en-
closing Supertonic. They could have been made to be Keyverbs but they
don’t have use outside of their respective Supertonics so it’s a waste of

a Keyverb. ’t need to be reserved keywords because they have

. Subjects that are Atoms in specific position are
position, because there could be no disambiguity

with TONAL takes after C++ (as discussed in[Influence]

used names in programs.
All Keyverbs live within the type ’gut’ that serves as a namespace. The

’gut’ is preferably omi code, but for special circumstances. In the

event a new languag is introduced with a new Keyverb, that

Keyverb may conflict ode that may have used the atom to
name one of their let- allows programmers to temporar-
ily reassign a local rep o that it is painless to upgrade
to a new version of the guage without unexpectedly changing seman-
tics. The Keyverb can then used with the local replacement, or be used

with the ’gut.’ prefix.

The ’gut’ type is special - any ot necessarily in the Object-

Verb Dominant position) tha s with ’gut’ unambiguously refers to
anything that is contained wit efined ’gut’ type. Other
special types are *hype’ and ’std’ e the same semantics, but they
do not define any Keyverbs. In the a new language feature is intro-
duced with a new special type, that may conflict with existing code
that may have used to atom to name one of their let-names. TONAL allows

programmers to temporarily reassign a local replacement atom to use as

that special type.

5This only affects atoms in the Verb position of a
Keyverbs is designed for. If a program has existing things w1th
in the Subjects position, then TONAL will never mistake them
sensible about it, and don’t name things that reuse Keyverb na

is what the concept of
e name, but are used
eyverbs. But still, be
for the hell of it.

52

D SUBTONICS

y local reassignment does not transfer over to included
source files when such a reassignment is in effect. Programmers often
want to view a source file separately, out of context, and it would be con-

fusing to not see the reg eyverbs.

Even the 1porary local reassignment of Keyverbs
and the specia : Ives Supertonics, so it would be easy for
an ad-hoc parser processing that TONAL does to handle

these reassignmen

Figure 10.2: Supertonic Form railroad diagram.

subtonic
(subject j
| 2 2 >«

Subtonics are Tonics with bits

aving a Verb position, that
are Subjects of Supertonics. The S \aving a Verb because
their position within the Superto ells it what 1t is. Subtonics only has

ey still must not have a Keyverb as

The issue is due to ad-hoc tools. O s design points that
emerged is that Keyverbs provide a sign ity to design for
allowing programmers to write ad-hoc too elatively few
in number and have only one position - ie, a arenthesis - so it would
be easy to write a small tool from scratch that ooks for Keyverbs. Or
the tool can look for things that are not Keyverbs in the Verb position.
Authors of such programs would not have to deal with ambiguities just to

get an ad-hoc tool working.

Supertonics have very specific forms, but they
with a Keyverb pattern, so an ad-hoc tool can simply skip o

they’re not interested in. They can safely ignore nesting in

33

bs 10 SUPERTONICS AND SUBTONICS

se Supertonics largely mean the same thing. In cases they don’t,
their pattern of Subjects and Subtonics are different from Supertonics; or
if necessary, it’s easy to find the enclosing Tonic to get the context.

Some S have alternate forms. The Mediant forms are re-

ing, and they are limited to only a few unrelated
h commonality between them. In short, it is easy

tore diant, M for matching.

igure 10.3: Submediant Form railroad diagram.

Pp— supertonic |«

Supertonics that a d control flow commands have a special

form, unchanged, that b of a Tonic with no Subjects. And apart
from lists, Submedian orm that allows a Tonic as its Verb.
The purpose is stra upertonic is a Verb, so it is in-
voked. TONAL does no low other modern languages in making every-
thing an expression, s¢ control constructs don’t evaluate to a value.
There are uses for this, hence its popularity in other languagesﬂ and C++

has a way to achieve this called “Immedi Invoked Lambda”. The Sub-

mediant syntax was chosen n, because having a Supertonic

as the Verb is like immediatel da. The difference is that
there isn’t a local func that’s con uld require grabbing the

local environment, and it is not s e at any memory location.

10.1 Keyverbs

TONAL tries the reserve as few Keyverbs as possible. Ewven though the

Keyverb design means there are no reserve , it’s still better

not to have too many different primitive age. With a mix of

6The tertiary operator in C and C++ are similar concepts, b
languages.

nly example in those

54

D SUBTONICS 10.1 Keyverbs

holder atoms, we can increase the variations without
increasing mental load.
On the flip side, we don’t want to get into the same situation as C++

where the keyword “ taken on so many different contextual

meanings.
All in all, euse Keyverbs provided that there’s a
clean syntactic b g Supertonic forms and that the mean-
ing of the Keyverhb e at the other forms, and the word
itself, means.
Keyverbs fall in five categories.
Declaration keyverbs are those that introduces a distinct thing.

Control Flow keyverbs are th hat does linear jumps; related to

branching.

Control Jump keyverbs are th urprising jumps; they are

either easy to abuse and widely 1, or they are expen-
sive to use, or they are hard to fo Create surprising side-

effects.

Lifecycle keyverbs are those that control the cleanup of things that

were constructed.

Access control keyverbs are those that ult settings of who

can touch what and do what.

Table 3: Keyverbs with major

Declaration Control Flow Control Ju ifecycle Access Control
let it /iff wait readers
func loop give writers
type stop goto virtual
next trip pull-out include
eval trap grab
Every Keyverb except the list specifier can be usedsi orm. Not
all of them can be used in a declarative body subtoni f them

can be used in an imperative body subtonic.

35

10 SUPERTONICS AND SUBTONICS

Table 4: Keyverbs with minor supertonic form

Declaration Control Flow Control Jump Lifecycle Access Control

func push-in readers
type pull-out writers
0 virtual
include

only be used in a minor form, because the list must

be eitl ed ot-name, or passed to a Tensah.

Table 5: Keyverbs with mediant form

Control Flow Control Jump Lifecycle Access Control

let push-in

Declaration Access Control

let
func

type

Par

Objects

TONAL is definec C bstract machine (AM, herein). This AM
abstract machine, which in turn
generalizes a basic are model; however, this is not a prerequisite
or part of the definition. The ‘bit’ (not assumed to be a binary digit) is

assumed to be the lowest level of information of the AM.

Figure 11.1: Value nces, and Objects.

instance jdeptty

let name)

let name

Avalue in the AM is a finite sequence of bits. By themselves, they have

no intrinsic meaning. Nothing can be done unless the AM bestows a type

upon the value.

An instance is a specific value with a type; a m set of all

57

11 TAXONOMIES

t order those things can be done.

An object is an instance with an identity allocated by the AM. Whereas

values may have a matching sequence of bits but their equivalence is un-

g instances may be equivalent but their identicality

so for the purposes of this document, the term ‘let-name’
will be used instead, because variables are often defined with a ‘let’ com-

mand. A let-name is a proxy to the identity of an object in the AM. A let-

name allows us to di ere, when, and what order things can be

done with (or involvi

ine tenses

Present-tense Compile-time
Future-tense ly corresponds to Run-time
Past-tense Moved or destroyed

A let-name is in either ‘futu , or ‘past’ tense. A let-name

in future-tense means its obje lue is only known when the compiled
program is executing. A let-na means its object’s value
is known when the AM is execu AL commands. A let-name in
past-tense means that the AM has ociated the let-name from its ob-
ject’s identity. Using a past-tense le e is an error. The dissociated

object may have a new let-name bestowed up on it by the AM.

an object’s value not known to the AM, o ure-tense let-name.
A future-tense let-name might move to

placed by an object with a value known to the AM.

58

Figure 11.2: The composition of objects.

Encloser object

Base object

Enclosed object

Enclosed object

Enclosed object

Enclosed object

Objects may be made up of ¢ bjects, as defined by the object’s
type. Those objects are called ‘enclose 1 the object that encloses those
objects is the ‘encloser’. The iden ; oser is dominant over the
enclosed; the identities of the en ninant to the encloser.
The identity of enclosed objects ¢ eachable only through the identity
of the encloser.

In the real world, complex objects are composed from smaller objects —

like Generic-Brick-Construction-Toy. TONAL’s prim esign tool is com-

position of smaller objects. To make co omplex objects, de-
signs have to be built around well-define ndardized interfaces - like
Generic-Brick-Construction-Toy. Adherenc their require-
ments do not dictate how an object meets the y that they declare that
they meet them.

Objects can implicitly adhere to an interface as long as the generic Ten-
sah that is called upon it accepts it in the present-tense. Objects can ex-

plicitly adhere to an interface by its type being derived from the

Such an interface is called the object’s base type; obj Ve more
than one base type. A base type can be a partial or comple lemen-

tation of an interface. The base type object is enclosed by t

39

12 CONDITIONING

ut allows the deriving object to be used as though it is that en-
closed base type object.
Real world objects interact in limited ways, even when they’re part of

the same obije objects have some surface boundary that other ob-

prevent them from touching the insides. But even
surface, not all of them should be able to interact

of a car analogy: a car should not touch the in-

set of parts; a car’s exhaust and its air conditioning system shouldn’t ex-
change gases.

Objects have contr e present-tense, over which of its enclosed
objects — including b ject — that other objects can have access
to. They can even con ween enclosed objects.
Read access allows 0 be used. Write access allows an

object’s value to be mo d. Virtual ss allows an object to customize

how its base type obje rforms some function. Grab access allows an
enclosed Tensah, one which doesn’t implicitly grab its encloser, to access

its co-enclosed objects. Include access allows Tensahs and data defined in

external files to treated as bein

TONAL access categories dependent of each other. eg, we can
read the level of a fuel gauge, ial process to add more
fuel, not by manually writing the e fuel gauge itself. eg, you can
customize your order in a restaur ut you don’t actually direct how

the chef makes it.

12 Conditioning

Error handling in most languages is added as a rthought and not

treated atlanguage level. For languages with error ing support, like

60

atch-exception scheme, they only cover runtime errors.
In languages like C++, it is even impossible to enforce at compile-time
whether, and which, exceptions need to be handled. On the flip-side, lan-

guages like Java requi ring exceptions as part of the function sig-

nature, and/o > handled, which can be quite annoying.

The exceptic 50 be confusing because it’s supposed to
be used only for e nstances. If naming is the most difficult
task in programm and scienc Jeneral), then categorizing things
is the second. “Exce al” means something different to everyone in
different environments and time-of-day. There is no universally agreed-

upon understanding of what constitutes an exceptional circumstance.

Many APIs have error codes ox code that is either returned from

function calls, or has some gloh 1at must be documented and
checked after every API call. Ret be annotated to force the
compiler to issue some warning ’t been checked, but

global state errors have no lang support. Status code reports on a

status which may or may not be sidered exceptional, but all else be-
ing equal, the designers of such an API would prefer programmers check

the status before continuing.

Assertions, pre-conditions, and post-c orce contracts that
cannot otherwise be enforced through t e of types. For example, a
ranged-integer type is used to enforce co pted integer
ranges in APIs that use it, but the ranged-in ype itself can only use
raw integers. It has to use contracts, because t ren’t restricted types

all the way down.

Implementations of contracts in most languages tend to be enforced at

runtime, and they also tend to evaluate to immediate failure

tools may be needed to handle these failures in or ul things
like automated testing. In C++, static_asserts cannot be h

as they cause compile-errors on failure, so they are impossib

61

 states 12 CONDITIONING

omated way without some macro trickery to replace static_asserts
with normal asserts or exceptions in tests.
TONAL conditions unify all out-of-band status reporting use-cases -

hemes, in other words. They syntax is broadly the

lling in otherlanguages. Conditions are not thrown
and trapped (or trapped not, there is no try). Pro-
esent-tense condition trapping for free, and there-

fore al i mit-testing support when and where it mat-

guarantees beyond just the language-level checks.

Conditions that are not trapped by a func are recorded in a set of con-
ditions so that they aret ed at present-tense. It is not necessary for
programmers to mai of possible exceptions to silence the com-
piler at every functio Java. Nor is it necessary to check for a
condition every time, odes or global error numbers. It
is even possible for the conditions will not be trapped
and deduce an exit fas h for a task or the entire program.

API designers set up trip-wires all around the code and programmers

trap conditions that they know how to handle.

12.1 Atonal states

The counterpart of tonal music . Atonal conditions arise

when code is incompatible with NAL language. All atonal condi-
tions arise in the present-tense, gen d either by the AM, or tripped by
code.

Atonal conditions that can be trapped are atonable. Atonable condi-

tions must be trapped, and possibly explicitly re-tri resent-tense,

or it is an immediate AM-error. Atonal ¢ be used by library
designers to do things like allowing programme hoose a different

path, such as selecting different overloads, or buil

62

ons that cannot be trapped are unatonable. Tripping an
unatonable atonal condition is an immediate AM-error. An unatonable
condition can be intercepted in order to be inspected, but will escape any

trap. There are certain the language, such as access rules, must

not be recove t increases the chances of errors when

fundamental p guage are broken if trapping them were
allowed.

The capability ip atonal states in present-tense

to drive the AM is ar 2r way to eliminate differences between regular
code and the AM. Code can be treated as though it is just a generic exten-

sion of the AM’s operation.

13 @jectives

Atoms beginning with the single lues that are injected

by the AM. For reading and parsi se, such asfor third party tools, the

@ character is forbidden from a r-defined let-name in any position
of the atom.

These values are provided to make present-tense reflection easy to use.

All values are one of the archetypes.

These values are defined anywhere in a source file. Th non-

63

13 @JECTIVES

alin that there are no enclosing objects that they can be used as a
Dominant let-name. These values expose information about the compile

process.

ives, as a Long, the number of newlines passed by the

file gives, as a Qtom, the name of the current file
AM relative to the initial working directory that
e gives, as a Qtom, the UTC day that the AM started

since the Unix Epoch; @tick gives, as a Long, an always increasing number

every time the AM injects this value; @nest gives, as a Long, the Tonic nest-

AM’s installation files onical URI; @libs gives, as a List, the Qtom
filesystem canonical
libraries; @root gives, m filesystem canonical URI of the

directory of the root s e file; @p gives, as a Qtom, the filesystem

canonical URI of the d ory of the output binary.

Table 9: Tensah @jectives

These values are defined relativ the immediately enclosing Ten-
sah. They can be accessed by Subdominant from within a Tensah, or by

Dominant with an object.

The value @type gives, as a Type, the ue that is the Dom-

inant. When used from within a type, it is hen used within a

func enclosed by a type, it is that enclosing type. I c-enclosed func

64

e type of @object. The value @name gives, as a Qtom,
the Subdominant name of the Tensah (maybe even from the @type ob-
ject). The value @object gives, as a value, the enclosing object only when

there is a Dominant obje) Tensah grabs @object, then the object is

the Dominant ah is accessed via a type as the Domi-
nant, then the i e value @params gives, as two Lists in a
es and their types. The value @grabs
gives, as a List, the P hat may have been grabbed by a
Tensah. The value e gives, as a Long, the number of bytes that an
object takes up in memory, including padding.

The value of @object and @param depends on how a Tensah is ac-

cessed: for @object, via a Domi bject vs via a type; for @param

generic parameter types are u til invoked. Therefore those

@jectives are not accessible outs ah being accessed. Never-
theless, the Tensah could choose ation when accessed

and expose the information man

The value of equating @type t e Tensah when used allows anony-

mous types to be referred to.

The values of the elements of @grabs can’t be , as their TOWEL

may have been transferred to the Tensa xpose too much in-

ternal information. If the Tensah’s enclo object is grabbed, then itis
always the first element of the list, and the the @object’s
@enclosed objects.

Memory only exists in future-tense, so th e of all archetypes is

0. Types that derive from the Scalah archetypes do have a @size greater
than 0, even though they may have a value in present-tense. Accessing

the @size of a type may forbid some possible optimizations; s

ing v-table pointers, or eliding enclosed objects, or hoi ent-tense
enclosed objects outside of a type; since the AM must give

dnsSwer.

65

13 @JECTIVES

Table 10: Func enclosed @jectives

@func
@early-destruction
@current-condition

@conds

@traps

2fined for a func in addition to the objects defined in

2l64] The value @func gives, as a Func, the enclos-

something while it’s being defined. It also avoids the problem of acci-
dentally calling an overload in the enclosing type if it exists. The value
@early-destruction gi Long, 1, if an object is being destroyed and
a push-out has trigge y destruction; 0, otherwise. The value
@current-condition g t that was tripped as a condition, as
though it were pulled- primed for TOWEL roundtrip.
The value @conds e conditions that can escape the
func. This value can n o accessed inside the func itself, as the the list
cannot be finalized until the end of the func.

Funcs do not define an @encloser value because either a func is en-

closed by a type, in which case i plicitly grabs the enclosing

@object or @type; or ifitisa nclosed func, it should explicitly grab
what it needs (including the en ject, if it has grabbed it)
instead of blanket grabbing eve 1a the @encloser.
Justlike @object and @params, canonly be accessed from within
the func it refers to, for the same rea at there might be some generic

parameters that are only on invocation, or some grabbed values.

Table 11: Type @jectiv
@bases
@encloser
@enclosed
Q™ type

66

are defined for a type in addition to the objects defined

in [Tensah @jectives| on page @ The value @bases gives, as a List, the

types and/or the present-tense value that a type derives from. The value

@encloser gives, as a e type inside which the type is defined in-

side. The val ne func, the destructor of the type, which
is useful for an) (e value @enclosed gives, as a List, the
names and the ty enclosed objects.
As with @obje nc, these @jectives are only acces-
sible from inside the for the same reasons, but they could be exposed

as enclosed let-names or through accessor funcs.

14 TONAL hooks

A musical hook is a piece of music ed often. The AM has hooks

for common customization requi e not explicitly invoked

by the programmer, but are inste plicitly inveked by the AM at spe-

cific syntactic junctions. The hool ow the AM to guarantee safety and
performance by reliably doing all the things that programmers eventually
forget to do at some point; or the program logic is too complex and would

get missed by the programmer. Where the AM

'rmine safety, the
AM can elide some invocations, bring fo 11nvocations, or delay invo-
cation until necessary.

The following subsections explain the pu d action of these hooks.

The syntax will be explained in n page

14.1 Conversion

Creating an object of one type from an object of another t

conversion. In some languages, it is called coercio 1s sort of
like conversion, except it’s the same underlying object. So

implicitly convert an object when constructing a variable, or a

67

rsion 14 TONAL HOOKS

sting variable, or when passed to a function that takes a different,
but convertible type.
Implicit conversion is the cause of a lot of errors, especially in regards

meaning what it looks like it means, and between dif-

5. Finding the correct function that is overloaded

, and therefore bugs, if implicit conversion is al-

an overload-set of Tensahs, exact types must match, so the programmer
must explicitly use the construction of the desired type for that Tensah
parameter. Even if th eter is a base type of the object being passed

in, conversion must b

The only casein T versions are implicit, including up-

casting to the base typ o overload pruning. If a Tensah
doesn’t have overload nition - then implicit conversion
can take place. There risk of calling the wrong Tensah. If the pro-
grammer then adds an overload in the future, the AM will then complain

about requiring the exact type to be passe

Conversion may not necess the creation of a new object.

In the above example of a ba e, no object of the base type needs to
be created. It is just has the effe overload candidate, and
the actual object will be passed t verload if it is the selected one. It
is as though the object were relaye e base type, but without actually

relaying the object being refered to.
A similar case is conversions of a machine number type to a wider

type, such as from char to int, or float to double. Nou w or overflow

errors are possible with widening conv 0 copy is required

when converting for the purposes of selecting an oad from the set.

TONAL’s present-tense programming is enabled use of the archetypes.

68

14.2 Redirection

of a user-defined type, is considered present-tense if it
is convertable to one of the archetypes. The unpack literal can be used on
a user-defined type if the type can be converted to an archetype list. The

list itself is present-te e elements do not need to be.

14.2 Redir

Generic program rogrammer to make an object look

like a different typ ers/adapters/bridges/decorators. In
some extreme cases, xample, the wrapper type may map close to the
destination type, but due to some design constraints, cannot merely in-

herit from the destination type, so the programmer would have to man-

ually connect the wrapper type’s e to the destination type’s inter-
face.

For a concrete example, cons der types, such as an op-
tional type. If an optional objec ect of the destination
type, then we would want to all eneric programs to access that op-
tional object as the destination o . However, the optional object has
its own interface - eg a func named valid - that might clash with the des-

tination type.

Redirection would allow programme TONAL understands

dominant atoms. If a redirection exists, will always defer to it, re-
gardless of whether other enclosed objects ist. The redi-
rection is then responsible for interpreting t m - as a qgtom - and for-
warding to the desired destination, or to an e d object of the wrap-
per type according to some naming scheme defined by the programmer.

Another use for redirection is to make an type behave like a func when
used in the verb position of a command.

Redirection goes to the heart of how TONAL nant let-

names, so there are some restrictions that prevent redi i om be-

having like regular funcs.

69

15 TOWEL

sion is disabled for redirections, but more accurately, redirec-
tions and their overloads are invisible from within a type, which means
any enclosed object fallback value command or enclosed func does not

see any redire s,that are defined. Respectively, accesses from outside

directions. This simplifies how programmers can
ns, as they don’t have to worry about infinite recur-

e in present-tense. They also don’t have to worry

15 TOWEL

TONAL extends the R Acquisition Is Initialization paradigm that

C++, D, Ada and Rust with Total Ownership With Elastic Life-
An object, under T

goes out of lexical sco both TOWEL and RAI], the lifetime of an ob-

ject begins when thele e/variable is first introduced. In both TOWEL
and RAII the lexical scope is bounded by imperative bodies. In C++, that

means the braces. In TONAL, that means bodies and control-flow/control-

jump bodies. In both TOWEL ves and copies are elided if an
object can be constructed in i

However, in TOWEL, moves eaning that the let-name
can no longer be refered to afte ve. It doesn’t mean that destruc-
tion isn’t performed. On the contra responsibility for destruction is
merely moved to the final lexical scope that the object resides. This elim-
inates the need for a C++-style move construction and a direct memory

copy suffices (in cases where moving is necessary).

Inlanguageslike C++, RAIl intersects ystem through type-

qualifiers - qualified types are distinct from the u ified type in many

contexts. Constant references can extend the life mporary object.

70

r-valu or temporary objects support move-semantics, which

alters what can be done with object lifetimes. Because qualified types
are distinct from each other, they can be used for function overloading in

those languages.

TONAL bre adition of convolving lifetime manage-
0 the discovery that TOWEL makes type

or lifetime management, but also not

the AM whether to use views, allow mutability, or no longer used in a

certain lexical scope.

Programmers can also see theg of other programmers. Program-
mers can tell others when they eed to write to an object. Pro-
grammers can tell others when ¢
before being shunted somewher S artantly, programmers

can tell others who should own t en it can be destroyed.

One side effect of not requiring rence or const/mut qualifiers means
that funcs don’t/can’t have different overloads that takes different quali-

fiers of the same type. This simplifies API design w. funcs don’t need

to explicitly handle each case. The API i with information

about type qualifiers. One common ann e in generic C++ is having

to account for all qualifiers, necessitating i arding ref-

an object, and the AM will take care of the correctness and performance.

Another side effect is that there is no need to talk about value cate-

71

ocal 15 TOWEL

er’s type might be an r-value, but the type of the variable is an
l-value. The object that the variable name points to might be temporary.
With TOWEL, there is a direct physical metaphor that any person living

in a physica an understand.

ays know where your TOWEL is.

7 languages and programmers can convey information by
. The default option itself has intent. In TONAL, all ob-
jects begin life inside a func. Whether a TONAL program is executed, or

a TONAL shared library is loaded, a func is invoked that creates objects

and/or has objects cre it, that invokes other funcs which creates
more objects.

Objects are created More precisely, objects are created
to be modified in the ere created. Objects are com-
monly created and th eaked a bit before being passed off to other
funcs to do work with. Programs do work, and to do work, programs have
state: objects with changing values or enclosed object values. So when ob-

jects are first created, they are non-co ues: they may be written-to

and read-from. This is the s st languages where non-const is

default, like C++, and the opp f newer guages, like Rust, where
things are non-mut by default.

After a func local object is crea d tweaked, several things can be

done with it:
1. Go out of lexical scope, to allow the destruction of the object.
2. Viewed as another let-name.
3. Be passed into a func that does wor
4. Passed out of the local lexical scope as the eva n of the func.

72

15.1 Func local

the local lexical scope as an output parameter.
6. Replaced with a new value.

7. Replace an enclosedsabject of the func’s enclosing object.

Points 5, 6, an OWEL transfers. Point 2, 3, and 4 may
have explicit TC ansf he other points do not transfer TOWEL.
al objects remain writable until the
end of their lexica e. end of lexical scope, they become past-
tense and are destroy 0 TOWEL transfer occurs - it is the default thing
that happens.

With respect to point 2, a let-name that refers to another let-name

without explicit TOWEL transfer not the construction of an object

- is a read-only view. No copy is 1 trast to C++, which requires
a reference-qualified variable in
ondarylet-name isinlexical scop 3 1ame is also read-only.
The primary let-name still has th

With respect to point 3, this is the same as point 2. TOWEL remains
with the primary let-name when there is no explicit TOWEL transfer, so

the func only has a read-only view of the let-nam contrast to func-

local objects, which are expected to be In the general case;

objects passed to a func are expected, i , to merely in-
form the func as to how it should operate. L takes after
const-by-default languages like Rust. This st a balance between C++
and Rust, between usability and safety. Func- objects knows where
their TOWEL is, whereas invoked funcs do not, so it is usable and safe
to make func-local objects modifiable by default, while being safe for ob-

jects passed to funcs read-only by default. In some ways, it i

usable to prevent unnecessary modification by inv as it can
make following the logic of a program easier.

With respect to point 4, TOWEL is implicitly transferred. T

73

15 TOWEL

d no longer needs the func-local object. Due to the object begin-
ning its lifecycle locally, the AM has complete freedom to elide any copy-
ing or moving of the object to its evaluation destination. In actual fact,

when evaluati nc-local object, there is no TOWEL transfer, because

ruct the object at its evaluation destination from

osed objects of func-local objects, points 1 to 3 are

With regards to the intersection of point 2 and 4 - evaluating a func-
local let-name view to another let-name - this requires a TOWEL transfer,

because it is not corre valuate to a view to a local let-name in any

language. Once the f t-name is destroyed when the func fin-

ishes, the view would dangling, so a TOWEL transfer must
happen to prevent th

Func-local objects enclosed ts that are views to other ob-

jects have the same p m on evaluation, but such objects cannot be

constructed at the return destination at all and therefore a AM-error.

15.2 Transfer

One way to think of funcs is an inside_and outside. In most lan-

guages, there is talk of a call-sta architecture, compiler,
and operating system; call-stack: grow up, they may grow down,
they may be discontiguous in the of concurrency, like threads, fi-
bres, signals and resumable functions. This variability could mean confu-
sion, since stacks, in computer-science, generally have a top; but choosing

this terminology for call-stacks isn’t very descriptived tack is down-

growing. In languages like C and C++, t a call stack is not

even a part of its abstract machine definition, in to allow freedom

of implementation - especially for features like resu functions. Call-

74

15.2 Transfer

1ves are just implementation details.
In computer-science, there is talk of black-boxes. Programs, subpro-
grams, and types should be black-boxes, with no coupling between the
inside of a box and the

TOWEL, there

of a box. In RAII languages, and therefore

2ing in-scope, and out-of-scope. TONAL
takes inspiratic , hence considers the inside and outside
of a func; of a sc¢

From the outsid aluated), the inside of a func (the
func that is being ev ted) should be completely concealed. From the
inside of a func, the outside should be completely occluded from view. The
inside and outside are only connected via the parameters, the arguments,

and the evaluation.

Figure 15.1: TOWE iagram legend.
caller action -
callee action -
flow of time /
Cross-boundary TOWEL transfers are ecause of this black-

box principle. Whatever TOWEL transf arguments_happen inside

the function is completely invisible to th e-versa. The
programmer just has to tell the AM their in their constraints; their
knowledge. In the common, best, case, the A lowed to do nothing.
The outside can transfer TOWEL as they want,"but if the inside doesn’t
do anything to accept the TOWEL, then nothing happens. The inside can

transfer TOWEL and write to objects, but it can’t affect the o

outside does not cooperate.
From the outside, the two TOWEL supertonics are push

out. From the inside, the two TOWEL supertonics are pull-in,

75

15 TOWEL

a func is a box, then you can only push things into it, or pull things
out of it. If you are inside a box, you can only pull things in, or push things

out.

15.2: Cooperative inward transfer.

push

pull

When you push something i -box, it’s gone; out of reach. You
no longer have any control of ing. Programmers often construct an
object just to pass it to another be used again. Pushing-
in an object into a func in TONAL everyone that intent. The object is

constructed and is no longer requi
But to be able to push something into anything, you must have a hold

ofit. To push a let-name into a func, it must have TOWEL. Once pushed-in,

the receiving func has the object’s TOWEL - ie, respo r destruction

or transferring TOWEL - so the let-nam d unreachable. An
object that is constructed as a func argum 1t of a minor tonic

is automatically pushed-in. A let-name that is a vie nother object or

76

15.2 Transfer

nclosed object that is a view to another object cannot

includes the e bjéct as in implicit argument, if the func was
invoked as a do SU inant form of an object. One reason to
pull-in an argume g a func-local copy, is to make a
func more readable put creating so many func-local let-name, when
a func argument is already well-named for the purpose.

The inside of the func has no idea whether or not an argument was

pushed-in. The outside of the fun anot know whether or not a func

pulled-in an argument. The AM ¢ when in present-tense.

If the AM sees that an object 2d-in as an argument, and
the func pulls-in an argument, th
erty of funcs by making a copy o ject. The outside of the func has
the original object’s TOWEL, whil > inside of the func has a new object
that it can write to, as if it was created as a func-local. If the object’s type

is not copyable, then it is a AM-error.

If the AM sees that an object was pus argument, and the

receiving func does not pull-in the argu the inside of the receiving
func still sees the argument let-name as a - Therefore no
copy needs to be created. However, the rec func itself has TOWEL
over the object, so it is destroyed when the re func has finished, at

the latest.

In languages like C++, the former is known as pass-by-value; the lat-

77

15 TOWEL

s. The programmer knows whether they no longer need an ob-
ject locally, so pushes in to communicate that knowledge. The program-

mer doesn’t have to worry about whether or not there is an unnecessary

an object was pushed-in as an argument, and the
ent, then the AM can elide the copy, altogether.
for non-copyable objects. The AM might even

In C++, this is achieved either by constructing a temporary as an ar-
gument, or by moving an object. The function parameter would either
be a value, or r-value ce-qualified. In TONAL, the AM makes this

determination by wh (ammer coded.

Func-local let-namg vs of other objects can also be pulled-

in, and has the same as an argument.

The programmer o 1eeds to tell TONAL whether or not an object is

needed outside a func, and whether a func needs to write to an argument
object, and the AM figures out the minimal and optimal code to gener-

ate in each case. Neither the outside or inside of the func can make

a mistake, like forgetting to d ject, or writing to the outside

object, or accidentally makin nwanted copy. Both sides cooperate,
rather than dictate what the ot ume that requirements

are met.

Resumable functions are a trad lly tricky case that is eliminated
by cooperative inward transfer. When a resumable func is unsuspended,
the handle to the func’s control block should not be touched, because as

soon as the func is unsuspended, it may have alre ed executing -

perhaps on another thread - before the urned to the sched-

uler. In code, the scheduler still has the contro k’s let-name. But

with cooperative inward transfer, the resumable fu 1ls in the control

78

15.2 Transfer

lock’s type is not copyable. If the scheduler code does
not pushi-in the control block to cede TOWEL to the func, then the AM fails
in the present-tense when trying to copy. The scheduler must push-in the

control block. This ca et-name to lose TOWEL, and any attempt

to even refer ause the AM to fail in the present-tense.

erative outward transfer.

push

pull

oyed at the end
‘TOWEL are modifiable.

All let-names in a lexical scope with TO
of the lexical scope. However, all let-names
Sometimes a programmer no longer needs to 0 alet-name anymore
- they are finished with the object. They can make it aware to the AM by
pushing out a let-name. Unlike pushing something into a func, pushing

something out of a func isn’t an immediate transfer of TOWE

terests of safety and usability, a pushed-out let-name
as the let-name is still in lexical scope, it can be referred to b ogram-

mer. The AM could have somehow marked the let-name as un e and

79

15 TOWEL

-error when used, but that would defeat the purpose of allowing

a let-name to be read-only.

me can be pulled-in again. This promotes a disci-
tability by encouraging the programmer to make
the usag plicit; to € plan and demarcate the regions of mutability.
It can sh¢ oblem areas: if there’s constant switching between pulling
in and pushing out; or if something remains pulled-in for an entire lexi-
cal scope without being written to. Contrast this to traditional languages

like C++ and Rust, where either something is non-const or mut forever in

a lexical scope.

The AM could decid tapushed-outlet-name can be destroyed early.

When the let-name is onger referred to in a lexical scope, it can de-
stroy the object, as long as it is able to maintain the destruction order

guarantee. Every reference to a push et-name implicitly prolongs

its life. Some types of objec ever be pushed-out in this man-

ner. For example, mutex lock ts use th ical scope to protect ac-

cess. An accidental early destr ake it extremely difficult
for programmers to see such an e at can only occur sporadically in

future-tense.

Evaluating a let-name is an implicit p e let-name is a view

of an object, then it must be pulled-in ing, subject to the

copying rules.

80

15.2 Transfer

igure 15.4: Cooperative object transfer.
in out

push

pull

Enclosed objects have scopes at are dominated by the

enclosing object. The enclosing ¢) TOWEL, just like any
other func parameter. In order to closed objects, the en-
closing object must have been p -in at its own lexical scope, as well

as pulled-in by the enclosed func.

It is an error to pull-in individual enclosed obj because that in-

troduces a notion of an object compose ifetimes, which is

not something that’s well studied. The en g object must therefore be
completely pulled-in. Once pulled-in, all enclosed ob-
jects must NOT be destroyed. If the enclos ject is not pushed-out
again before the end of the func, then the en object is considered

destroyed.

Enclosed objects, or the enclosing object, which are evaluated from a

func, are readonly views, in the general case. If the enclosi

pulled-in, then the enclosed objects are considere d there-
fore is evaluated in the same way as func-local objects. Si

enclosing object was pushed-in to some other func, then the e d ob-

81

-trip 15 TOWEL

at was evaluated is implicitly pulled-in at the receiving scope, in

order to avoid referencing an object that is destroyed.

15.3

ure 15.5: Round-trip, no transfer.

push

pull

The TOWEL round-trip is the serenidipitous culmination of abstraction
and intent-preservation resulting in performance with safety.

Some funcs play the role of a factory - they set bject to some

state that is beyond the scope of its cons is usually achieved

in programming languages through in-o s, which are typi-

cally implemented either as non-const reference o ter parameters.

82

15.3 Round-trip

ems with pointers apply. When it come to references,
the main problem comes from C where a programmer, expecting to use a
variable as an in-out argument, neglects to provide an initial value with

a view to save a bit of tin the value is going to be overridden any-

way. Over tim (code gets modified, added to, deleted

from), errors d where the value ends up being used

An object is pas: dification via the TOWEL command
“pull-out”. It evoke imagery of pulling something out of a box. The
object is implicitly pushed-in, so that if the receiving func pulls-n the re-
spective parameter, no copy is made. When the receiving func pushes-out,

the parameter object itself is modif he pull-out completes the round-

trip and object that was passed t is modified.

The AM detects these round-tr ense and completely elide

any copying in or out of the recei

Round-trip semantics also app ated values under simi-
lar conditions. An object is pushe o the receiving func. The receiving
func pulls-in the respective argument, does something to it, then evalu-

ates it. Outside the func, if the return-value is pushedsin to the let-name

that was pushed-in to the func, then that

Evaluation round-trips are useful for 1 enting func chaining. Re-
call that an object evaluated from a minor- pushed-in to
the major-tonic func call. As the dominant o s pushed-in and evalu-
ated in a chained fashion, the TOWEL round- icks in and elides any
copying or moving of the dominant object, while'also eliminating the need

for explicit push-ins in subsequent func invocations.

Chaining is a common way to implement pipelines and bui
can be tricky to implement safely with conventiona rs. Com-
posing a pipeline/builder that has to be passed along an if-e

means using a let-name, which means with convention type

83

I, hooks 15 TOWEL

grammer has to handle both the 1-value reference case as well as
the r-value reference case, but with alot of care and safeguards to prevent
letting a reference dangle easily. TOWEL makes it easy to switch between

different ining with the round-trip detection.

154 TOWEL ho

15.4.1 Construction

Construction is the process h AM creates an object, giving

value(s) a type and identity. Al d memory cannot be read until an ob-
ject has been constructed in it. y constructed unless its
base and enclosed objects are con ed. Base objects are constructed in
a left-to-right order. Enclosed obje e constructed in a top-to-bottom
order, after the base objects have b constructed. The AM maintains
this invariant order of construction, even if a type specifies their own spe-

cial contruction process.

The AM also supplies construction processes t akes the language

work.

84

154 TOWEL hooks

ure 15.6: AM-supplied default construction.

C DefaultConstruction)— Arguments...

PiecewiseConstruction

All enclosed objects
Remaining arguments

End

The default way to construct an object is to argument values

for each of the type’s enclosed base obj -to-right order, and val-
ues for each enclosed object, in top-to-b order. only is it the
default supplied by the AV, it is the default at every type is
constructed in this prescribed order. No matt a programmer might
define a custom construction process, the A res that the order of

construction is the same as the default construction.

Other languages call the constructor that takes no argum
fault constructor, but in TONAL, “default” is more
order of events in all cases, regardless of construction argu counts

or which construction process is being used.

85

15 TOWEL

Figure 15.7: AM-supplied identity construction.

s109[00 pasopous ||y

uononsuoDAze

saseq ||V

CO_uos._uw:OO>NM|_

¢adAvyoly s

uononisuodfnuapj

154 TOWEL hooks

e no-argument construction the concept of identity. It
borrows the sense from algebra, where a special element in a set under
a given operation is the identity. Though not always the case, it is helpful

to think of a value con 1 by identity construction as similar to ad-

ditive or multi For many types there are no suitable

identities, whic eful property to consider.

For non-Tens: eir identity is the equivalent of the in-

teger additive ide of 0 and empty sequences as the
identity constructio ies through to all types that take after Scalah
and Vectah rchetypes, like machine number types and sequence types.
Empty Vecta archetypes values are particularly useful as the primary way

of denoting nothingness and avoid e costly mistakes of having some

null value that may or may not X lent to 0. 0 is left to its rightful

place as an extant value for a scal Ot as a error-prone double-

meaning for a non-existant value

Tensah archetypes cannot me gfully have an identity value. Pro-

grammers must specify the value any type or func object, otherwise
the whole program is in error. No program can be valid if a type is un-
ful fallback value

ied. The AM must

known, or a func has no value. If there is some meani

in some operations, then that has to be ex

not guess at the programmer’s intention

For non-archetypes, enclosed objects of tity construc-
tion does not necessarily have to have an id alue. A type may have
a zero-argument construction that itself pro the values for its en-
closed objects that make up its identity value. The value could be spec-

ified as a fallback alue as part of the type’s definition, or given during

construction.
If any of the enclosed object types cannot be i ucted or
provided a value during identity construction, then the type not be

identity constructible.

87

I, hooks 15 TOWEL

ure 15.8: Common process for explicit construction of multiple objects.

PiecewiseConstruction) Unconstructed objects...

Per-object arguments...

Is skip argument?

Nol|

Construction
LazyConstruction

Current object

All available arguments are each enclosed object for

a default construction. In the m e, a programmer provides all ar-
guments needed for each enclose and non-base objects. However,
they may omit the tail of the arguments if there are suitable values, such
as if the objects are identity constructible, or the type definition has fall-

back values for the remaining enclosed objects.

Alternatively, a programmer can provi gument which will

also allow the corresponding enclosed object in t fault construction

order to be constructed with a fallback or identity

88

154 TOWEL hooks

mon process for incidental construction of multiple ob-
jects.

Unconstructed objects...

Construction

IdentityConstruction

urrent object
Current object

\

End

order. The construction might not be explicit; it migh

invariant of the default construction order.

89

~
[<§]
W
=~
wn
~

Figure 15.10: General construction selection.

p310N11SU02-10U MOIY) uonoNNISU0DAl

\|
i

€ 4N

T

|

Jsuawnbue seH

“sjuawnbiy

sjuswnBbay

uononjsuoQuwolisn)

¢ uUononiIsuod woisnd seH

uononisuo)

90

154 TOWEL hooks

ned construction process takes precedence over any
AM-provided one. A custom construction process may defer to other cus-
tom constructions, the default or the identity construction. This allows

constructions to be b om other constructions. This is what is

termed corre Proper initialization of values happen
at constructio] uction is delegated, instead of being left
in a partially-init then left over for the programmer to

forget to invoke a ion func to complete.

Figure 15.11: Library-given custom construction (tonic walk).

(CustomConstruction H Arguments.. |

Tonic Walk

References base object?
No[

References enclosed Yes
object?

No[

Basi
Ref(

< Is base
r

Yes

No| Yes
Some bases constructed?

No

Is object constructed?

No

LazyConstr

(latest cons!
current bast

Construction

Tonic subjects

No

TouchConst

Current bas
Tonic subjec

Base Object .
Referenced o

[tonics?

throw duplicate-construction

Yes

Tonic Walk Finalize Construction

| [

End Construction

Constructors in other languages maintai construction order by

limit where constructors can be called, whe bers are initialized,

and the precise order of those actions.

The AM ensures that the default construction order is adhered to, while

not limiting how a programmer defines a custom constructio

eral method of ensuring the default construction
object or enclosing object that is refered to for its first time

The value that it is initialized with is, in order of priority: 1) th

91

L hooks 15 TOWEL

g constructed with, or 2) the fallback value, or 3) the object type’s

identity construction. If all three are not defined, it is an AM-error.

The AM keeps track of whic ts have been initialized.

This ensures objects only get init once. Say for example there are
enclosed objects A, B, and C. If A h eady been initialized, and then
the next object to be mentioned is C, thien B is initialized by the AM before
initializing C. It is an AM-error if a construction for a base, or another

custom construction for the type is invoked more t e. This allows

custom constructions to be written in a form. Commands

can thus be interspersed with constructions an lizations without

breaking the initialization order guarantee.

92

154 TOWEL hooks

.12: Library-given custom construction (base object).

Enclos
Refi
Is encl
con
Ye
Yes
Is base constructed?
No
LazyConstruction
(latest constructed base,
current base)
TouchConstruction
Current base
Tonic subjects
throw duplicate-construction
t Tonic Walk Tol

Base objects are constructed left to right. Due to the construction or-
der guarantee, or more generally, the requirement that an object’s bases

are constructed before the rest of the object is, bases are implici

structed depth-first recursive ascent.

If a base’s enclosed object is refered to, the construction o

tee must be applied recursively.

93

I, hooks 15 TOWEL

irtual funcs that are invoked during construction do not dispatch.
The effective type of the object at the moment of invoke a virtual func is
the type of which the current construction process is defined for. It is not

any of its b or a derived type. No dispatch is necessary because

iven custom construction (enclosed object till end).

Finalize
Construction

End Construction

Is enclosed object
constructed?

LazyConstruction

object) (latest constructed base, last

I base]

TouchConstruction I

Current enclosed object
Tonic subjects

Tonic Walk

End

Any base or enclosed object that is not constructed, either explicitly
or via the construction order guarantee when referencing an enclosed

object or base, by the end of a construction is cons This adheres

to the principle of laziness. An object constructed at the

end of a construction, but construction of consti objects and bases

happen as late as possible during the construction en they are first

94

154 TOWEL hooks

read.

Figure 15.14: Common process for explicit or incidental construction of
latest unconstructed object.

Unconstructed object
Arguments...?

Construction

LazyConstruction

Unconstructed object
Arguments

[Unconstructed object]

End

An object may not be constructed until it, or its constituent objects,
are read from. Construction is delayed until first r leaving open the
possibility for collapsing the first constr e multiple writes up
to the first read. Inlanguages like C (and extension), a programmer
can declare a variable without a value, a issues from
using the variable without initializing it. T a was that to specify a
value when one could not be known yet was w 1. One may also argue
it would be less readable to assign two values to'a variable without doing

anything to it in between the two assignments.

There’s nothing inherently wrong about waiting until the
ment possible before finally setting a value to a vari S easy to
forget. TONAL’s touch construction ensures that there can

cesses of memory without an object being constructed in it. Th read

95

I, hooks 15 TOWEL

able is when it matters most that there is always a known, and
valid, value, so construction followed by zero-or-more consecutive writes

can be elided and substituted with the last written value before it is used.

e reminiscent of the common touch utility that mod-

on time, or creates one if it doesn’t exist. Touch

, means something is ensured to exist in a timely

15.4.2 Copy Construction

Copying takes one objec the same type and creates a new object of

that type. The default tation of copy construction proceeds just
as Default Constructic h each argument being the respective
enclosed object from t er object, to make an exact copy of
the source. Operation ect does not affect the copy, as

one would expect.

Some types are defined to be uncopyable. If a base object or an en-

closed object of a type is uncopyable, then that type is also uncopyable.

Programmers can define a ¢ construction for special se-

mantics. Most commonly it i fine a type that is uncopyable, for in-
stance, to model something tha e unique. Another com-

mon reason is to share resources objects.

Copy construction is not called programmer, but decided by the

AM. The AM minimizes copying obj and prefers to construct an ob-
ject in its final location, enabled by Lazy Construction. Copying is only

performed if the AM is unable construct an object in i al location.

A programmer can create a let-name an existing object,

but no copies are made until either the s opy are modified,

if allowed.

96

154 TOWEL hooks

15.4.3

A closed file cannot be read-from or written-to. It may be opened or deleted.

Once deleted, it can no longer be opened. Once opened for reading, it may

be read from. O riting, it may be read-from or written-
to. At each stag andle to a file, but the things you can
do with it depe it’s in. The states transitions can be said
to result from cert i om the closed state, after opening
a file, the file is in ¢ ven state. Closing the file would put it back in a
closed state. Each state, with restricted operations, are good candidates

for a type.

A type may be used to representsa stage of a process pipeline. Data

that is computed during previou nay need to be kept around for
future stages, but maybe should
Each stage of that process may h

subset of that data, and that is do c ontrolled by the type.

It would be wasteful, both in programmer/testing time, and in present/future-
tense time and memory, to create a bunch of types and objects for each
stage, moving data between them, and having old stages lying around,

taking up space, and being incorrectly use be unproductive

and error-prone to have one massive t every possible operation

for every possible stage, with only docume tell program-
mers what operations are valid at which sta e valid order of the

stages, or indeed multiple paths through the

Relaying allows a let-name to be imbued wit ew type, without nec-
essarily having to transfer data to a temporary location. The let-name

from that point on cannot be accessed as the old type. It is as

new object was created in its place, and the old objec ed. The

AM does not provide any relaying construction for a

A programmer may define a relaying that does nothing, in case

97

I, hooks 15 TOWEL

pbresentation of the object stays as it is, but is considered to have a
new type, of course providing that the new type has the same underlying
representation. Complex pipelines are unlikely to keep all data around at

all times, and espective types shouldn’t have so much visual noise

g used, so sometimes it is necessary to move data
hile the new object is being constructed.

ement a design that is amenable to relaying is to

representation.
In an imperative body, types involved in relaying can be any size in

present-tense. In futu

types involved. As enc acts, its size must be the same as the initial

type’s size. Objects de arative bodies cannot be relayed, as
the enclosing type m its enclosed object’s types are the

same.

15.4.4 Destruction

Something thatis acquired (eg, extra me files, sockets, mutexes, database

connections, etc) must be rel o longer in use; and failure to
do so is a leak. Using somet released - including re-
leasing something that has alr ed - can lead to security
errors. Human programmers te either forget to release things, or
forget they’ve already released so g, or are bamboozle by confus-
ing or fast-changing code into believing they don’t need to release, or that

they do need to release.

TONAL calls the releasing “destruction”, like ot ages. Putting
the language (AM) in charge of releasin ead of leaving it up
to the programmer dramatically improves qualit

called RAII in C++. In TONAL, [15] TONAL goes fur

productivity. It is

nd prevents the

98

154 TOWEL hooks

g accidentally used after being destroyed.

o
3
B

9

15 TOWEL

Base objects in reverse
order:

Destruction

Current base object

JP AND PRUNING

ion has the top-to-bottom, left-to-right, order guaran-
tee, destruction is guaranteed to be in exact reverse. So for example, if an
older object is being destroyed, it will cause newer objects to be destroyed

first. Derived types ared d before the base types, so if a virtual func

is called durin spatching to overrides takes place. The
func of the cu pject being destroyed is called, because
the derived type destroyed.

Destruction cat ame goes out of scope. Destruc-
tion can happen w condition is tripped but not yet trapped. If a
condition is tripped during construction, only the constructed sub-objects
and bases are destroyed. If a condition escapes the destruction of an ob-

ject - ie, not the current condition is inducing the destruction of an

object, then the entire execution aborted. There is no sensible
state to recover to when an objec

In TONAL, all destruction be al func. Destruction al-
ways starts at the most derived t follows the destruc-

tion order guarantee.

16 Let-Name Lookup and Pru

Naming things is the hardest thing to do of computer science, and
science in general. The next hardest is be
Either names became extremely long just to ntiate from each other,
or they’re short and enclosed within other na order to not. Names
can mean different things under different circuimnstances.

Like most modern languages, TOWEL names are lexically scoped. They

depend only on its location in the text of the code, not on the

program. Names can be enclosed by Tensah arche ng a lad-
der of enclosing scopes. In TOWEL, this term is shortened to

Tensah names can be overloaded in present-tense and future-

101

16 LET-NAME LOOKUP AND PRUNING

eneral scheme for let-name lookup is to start from where a name
is being mentioned. The name is searched for enclosure by enclosure on
the ladder of enclosures. The search stops when the name is found in an

enclosure. A4T h-]let-name is a candidate to be looked up as soon is

lookup. The redirection operator is essentially a program that runs in
present-tense, and so is a black-box to the AM itself. If a redirection oper-
ator is defined, then i ookup reaches the enclosure of the redirec-
tion operator, the red perator is always chosen as the first and
only candidate. The re rator then runs in present-tense to ei-
ther produce a single c ondition to either cause the AM to

fail, or to resume the al name lookup rules at a higher enclosure.

During the operatio edirection, the redirection operator isremoved
from the candidates of name lookup while inside the redirection opera-

tor. This prevents infinite recursion. Na ookup from within the redi-

rection operator is upward limi irection operator’s enclosing

type’s enclosed objects.

When the enclosure being s all matching names are

gathered into an overload-set in rder. Everywhere else, the names
are gathered in reverse order beg from where the name is men-
tioned - essentially reverse-construction order. Matching names gathered

via reverse-construction order are gathered into an overload-set.

An overload-set can only contain Tensahs enclo type or an ob-
ject with a type archetype (ie, not a func d-set can be passed
around between funcs. It is just a list of Tensahs ad been gathered

by name lookup, and can be treated like any other nt-tense list. An

102

JP AND PRUNING

An overload-set cannot be empty initially, as one would not be created

in the first place with name lookup cannot find a name. An overload-set

Tensah. An overload-set of cardinality

> 1 will need to invoke to avoid ambiguity.

parameters.

Candidate te
TryMatch Arguments...
Match Next [

No C

N

Advance argument

No

Advance parameter
Match Next

One innovation in TONAL is the generali

Is pack parameter?

Yes

throw no-definition-for-skip | throw overload-abandoned (

[

of parameter specifica-
tion with the concepts of pack-parameters an -arguments. Variadic
functions in other languages tend to only allo e extra arguments at
the end of the other parameters. In languages that also support default-

arguments, those parameters must also be specified at the end o

parameters, and therefore do not play well with vari

TONAL allows normal parameters, pack-parameters, an ult pa-

rametersin any order without ambiguity. The mechanism that achieve

103

16 LET-NAME LOOKUP AND PRUNING

e skip-argument.

compatible with a pack-parameter, then the pack-
ent. If an argument is incompatible with the

ack-parameter is completed.

Consider the case 0 arameters, of the same type, in succes-

sion. How does TONA e first pack-parameter is complete,

when all the argumen also? In general, the first pack-

parameter stores all t rguments, and the second pack-parameter is
empty. Additionally, TONAL gives programmers the option to explicitly

complete a pack-parameter with a skip-argument.

TONAL allows default-argumen ositions other than the end. It

would defeat the purpose of default-arguments if the programmer has to

provide an argument in order to provide the subsequent argument. The

skip-argument is used in this case to allow the pro r elide the ar-

gument. The default-argument is create or the parameter, as
though the parameter was at the end of the para list and no argu-

ment was provided.

104

JP AND PRUNING

gure 16.2: Matching parameters (continued).

[

W ,
\ efault argume

Match Ended

Is pack parameter?

Remaining arguments:

Is skip argument?

ol
P N

Match Remaining Match Ended

throw overload-abandoned

A TONAL programmer is free to provide as1 skip-arguments even

if there are no parameters left to fulfill. This simplifies generic program-
ming so that the programmer doesn’t have to know the exact number of

parameters of every possible context.

Unpack-arguments that happen to be empty are also trea e same

way.

105

16 LET-NAME LOOKUP AND PRUNING

Figure 16.3: Check argument with parameter.

(CheckCompatibility)
I

Yes
< Is mediant ?

Can construct parameter
type from list items?

Argument matches Yes
mediant?

No

true I

Exact types - and exact values in present-tense - matches are manda-

tory if an overload-set has more than one candidate, but at this point of

the process, we don’t know how many candidates th in the overload-

set, so inexact matches are allowed. Deri d implicit convert-
ibility/constructibility (imcluding type casts in so nguages like C++)

inexact matches keep a candidate in the running t rload-set.

106

JP AND PRUNING

Figure 16.4: Pruning overload-set.

. Overload set
Pruning Arguments...

Extel
Cal
danglir
Prune overload set: Prune ci
dangling
Rejected
All parameters processed,
arguments remain
I Spexect
candida
(For all arguments: \
| Whittle ¢
Whittle overload set by:
throw o\
Type of match throw o
Present-tense
Mediant match
Non-pack parameter
I Canc
Yes
Overload set empty? —
throw overload-exhaust w overload-ambiguous Candide
/ /
Extended Matching Prune End

Overload pruning considers fulfilled-arguments to parameters from

left to right. Assume that the AM takes the i-th parameter from e er-

load and prunes all the candidates whose current p g con-

sidered does not match the current argument being

In an overload-set with more than one member - both pru d un-

107

16 LET-NAME LOOKUP AND PRUNING

, any inexact matches causes the pruning to fail due to ambiguity.
The AM must not try to guess at what the programmer means by trying
to find the best match, as there is no good classification preferred by ev-

ery one. Iti or prone for both the AM and other programmers to

to explicitly construct objects of the correct exact

ent which overload they desire.

Implicit conversions are the source of alot of er her program-

ming languages because programmers ve complete under-

standing of a language’s details. It makes overload ution seem almost

random some times.

108

JP AND PRUNING

gure 16.5: Pruning overload-set (continued).

Q‘*y

Extended
_

Whittle overload'set by:

Fewest defaulted
Fewest packs
Lexicographical pack <
defaulted

Spexeculate remaining
candidates.

Prune candidates with
dangling parameters.

Whittle overload set by:

throw overload-deleted
throw overload-abandoned

/ Candidates remaining. /

I

Candidate matched | | throw overload-exhausted | | throw overload-:

ous |

Prune End

R

End

Consider the case where two Tensah can s in the overload-set

have used up all available arguments, but the th have zero-or-more
pack-parameters or parameters with default-arguments that are left un-

fulfilled. TONAL, just like other languages with overloads, oper

principle of tightest match wins, so in the event of d

cardinality is the deciding factor.

In the contest between pack-parameters and default-arg

109

16 LET-NAME LOOKUP AND PRUNING

ity of a parameter with a default-argument is considered to be 1,
while the cardinality of the empty pack-parameter is considered 0. The
reason this is the case is because, even though the programmer does not

provide an ar nt, the AM has to create one. It is physically more ex-

pack-parameter, and so can be considered a looser
e way a function with n-1 arguments is a tighter

with n arguments.

Having established e principle can be specified as: the fewest

number of default-arg the tightest match. Then, in the case of

equal number of defa he fewest number of pack-parameters

isthetightest match. T qual number of default-arguments

and pack-parameters, then are their left-to-right order taken into ac-

count. Earliest pack-pa eter wins, for the same reason elaborated pre-

viously.

Programmers can further con e process during the speculative-

execution step: spexeculation. Pro ers can specify, in a more nat-
ural, imperative, manner, in the present-tense, constraints on the param-

eters, beyond types and present-tense values, by tripping conditions in

order to remove an overload candidate from the o -set. Spexecu-
lation happens regardless of the size of t overload-set, since
further processing can still disqualify an overloa idate and inform

the programmer that the program is incorrect.

110

Figure 16.6: Subdominant Search.

SubdominantSearch

Name
Search origin

Tonic Sub

T

> NN

DominantSearch

Name
First subject

SubdominantSearch

Name
Enclosing body

All name searches begin as subdominant searches, becaus
begin with a subdominant component. Recall tha
dot separated, and by definition the first segment is not dot

the first segment is found via subdominant search.

111

16 LET-NAME LOOKUP AND PRUNING

Figure 16.7: Subdominant Search (continued).

perative Bod Declarative Body Grab

———

back construction? GrabSearch

DominantSearch SubdominantSearch

Name Name
Type Enclosing body

1

TensahSearch

oz ol

For the most part, name s s like a simple current-row-to-top,

current-column-to-left (ie, rev order) of code in an edi-
tor. The body of a type is searche e order only during fallback
construction, and only for non-Te t-names. Once inside a construc-

tor, or in search for Tensah let-nam n all names are considered.

If a name search starts within a grab supertonic, it can only search for

names that have already been grabbed, and if not ere, does not

search parameters, but instead searches ensah body and so
on and so forth, since the purpose is to gr from the encloser.

Parameters are already accessible from within a T already.

112

JP AND PRUNING

gure 16.8: Subdominant Search (continued).

Parameters

rarch SubdominantS Declarative enclosure?

Yes |
Name

Parameters SubdominantSearch TensahLetNameMatch

Name
En type

In order to allow recursion for local Tens ose not enclosed di-
rectly by a type), the name of the Tensah is available as a candidate for
name search as soon as the name is finished being spelled. Type enclosed

Tensahs do not need this ability, because the name will be fi

the enclosing type’s let-names are searched. Tensa sed by a
type can also be overloaded, so direct recursion may not b

reason to refer to another Tensah of the same name.

113

16 LET-NAME LOOKUP AND PRUNING

Figure 16.9: Let-name Match.

Name
Let-names in reverse declaration order from the Name's search origin.

) Yes
Prefix let-names?

No|

Add to Prefixing let-names

K |

DominantSearch

Name without Prefixing let-nau
Prefixing let-names[0] erload-ambiguous

End

Let-namesimmediately bec andidates as they’re introduced.

Implicit let-names may be int ed in parameter lists, base type lists,
and grabs. This facilitates mor code (debatably at the
cost of less clear code) by allowin ames to be directly created in the

scope they will be used in.

When the search name for is a dominant name, and candidate names,
such as those that are grabbed, could also be in dominant form. Those

candidate names are treated as potential prefixe search name.

There is simply too much ambiguity if the e candidate names
that are all prefixes of the search name. If such se as allowed, there

could be multiple overloads from multiple prefixes. ule trying to pri-

114

JP AND PRUNING

GrabSearch

Yes

Has bases?

7N\

No]

Yes
Has parameters?

7N\

No
SubdominantS SubdominantSearch
Name Name
Parameters Bases
End

Tensah search is co-recursive-descent wit ominant search. If a

Tensah has bases, then it searches the bases subdominant search

starting with at the bases. While in that branch, if nothing is found, it

continues with subdominant search starting at the parameter
that branch, if nothing is found, it continues with t search
starting at the enclosure. If the enclosure is (eventually) an i tive or

declarative body, then it could end up in Tensah search.

115

16 LET-NAME LOOKUP AND PRUNING

Figure 16.11: Grab Search.

GrabSearch

DominantSearch

Name
object

End

Tensahs that grab the @o re somewhat like funcs enclosed by

a type because grabbing @obje le to search the enclos-
ing object for a name. Even thou ject appears in a grab supertonic
directly after the parameters, the p ters are searched before the en-

closing object, just like a regular type-enclosed func.

If a func grabs @object, and it is enclosed by

@object, then the @object that was grab ame for both funcs.

A func cannot grab @object when it is enclosed unc that does not

grab its @object implicity or explicitly.

116

JP AND PRUNING

Figure 16.12: Dominant Search.

. Name
(DommantSearch " Dominant

Overload set =[]

‘ For all Dominant enclosed

objects:

Object matches Name first
segment?

No

Base

For all Don

b

DominantSea

Name
Base object

-

DominantSearch

Tail Name

Enclosed object

Base Search

=

When searching for a dominant name with more than one segment,

only the final segment is allowed to be overloaded.

Unlike C++, objects enclosed by base objects are

didates have been found in the dominant object. At first, thi

a recipe for disaster, because, say, if a base object func and th

117

16 LET-NAME LOOKUP AND PRUNING

nc has the same arguments, then that would trip the overload-
ambiguous condition. Recall that implicit conversions are also not al-
lowed with overloads, and this would also trip the overload-ambiguous

condition.

This is actually a de ty, because shadowed funcs become

an AM-error, with the ual funcs. Shadowed funcs are

in the same category ¢

ror as implicit conversions: the @object. The

ease-of-use is not wor e unergonomically hidden errors of implicit

conversions.

To overcome shadowing conditions, vert the dominant
object to the dominant type, or one of the base as documented in

Conversion on page

118

JP AND PRUNING

1gure 16.13: Dominant Search (continued).

For all Dominant b \ Same dominant object for
all overloads?

DominantSearch
throw overload-ambiguous

Name
Base object

Dominant search of base classes need not follow the construction-order
or reverse-construction-order. The same principle is followed
all matching names so that shadowing funcs can be

The constraint that the enclosing objects of the overloade dnames

be the same ensures that only the final segment of a domina

119

16 LET-NAME LOOKUP AND PRUNING

Figure 16.14: Multiple Dispatch.

Virtual overload set
Virtual arguments

Pr
—
|parameters| same in all \NO Whittle
overloads? /
Least |t
derivat
value n
Lexicog
argume
Lexicog
derivat
Virtual
remain
parameter type is base or No
derived from argument
type? /
Yes |

throw virtual-overshadowed

\

Prune By Rank

Dispatch

~

When an overload-set contains funcs that evalu ifferent num-
bers of arguments, the normal pruning p ave already pruned
the candidates with the best matching argumen arameters. If the

overload-set still contains multiple candidates, th mally this trips

120

JP AND PRUNING

Jiguous condition. This changes when any of the param-
eters are virtual, and are the cause of the ambiguity.
When any parameter of any func in the remaining overload-set is vir-

tual, then multiple disp uning kicks in - in present-tense if types

are known in s the most common case of first/object-
argument sing object-oriented languages, and induces
the same, desira oad-shadowing AM-error behaviour. It
is ergonomic, cor tend this behaviour to all funcs
with at least one vi parameter in any position.

The verification of equal number of parameters - of all overloads -
and arguments takes into accounts pack-parameters and defaulted argu-

ments.

Figure 16.15: Mult (continued).

Prune By Rank Dispatch

Whittle overload set by: Whittle overload set by:

Least [future-tense type
derivation distance AND
value match|

Lexicographical order of
argument matches |

throw overload-deleted
throw overload-abandoned
throw virtual-undispatched

Lexicographical order of

derivation distance |Overload set|

Virtual spexeculation of I

remaining overloads ‘ 1 I

Candidate matched ‘ | throw overl throw overload-ambiguous

i

Dispatch

1

The normal name search and pruning rules forbi icit-casts
implies that virtual parameters of overloaded funcs

same position(s).

121

16 LET-NAME LOOKUP AND PRUNING

der just the derivation-distance of the types of virtual parameters

of the following:

f(3,1) (16.1)
f(2,4) (16.2)
f(1,2,1) (16.3)
f(2,1) (16.4)

Between and

ical ranking of virtual ¢

seem intuitive to prioritize lexicograph-
er all, it’s easy: distance-2 is obviously

a better match than dis nce-2 argument comes before the

distance-4 argument; ing for normal funcs does it that way. But does

that mean [16.1]is a more eloser match than[16.2

In normal funcs, all parameter types are known exactly in present-

tense, due to the elimination of implici ting. So it makes sense for

a lexicographical scheme to b nking default-arguments and

pack-parameters. Virtual-ness es the semantics of matching because
the type is no longer known exa se. Inexact matches (ie,
derivation-distance > 1) are acce e as long as there exists an over-
load with a parameter type that th ment can be downcasted, which
means that, as illustrates, therecould exist better matches further

down the parameter list.

Consider a game physics engine collision simulati

gine that
; that is a func

jiect that is destruc-

is a func that handles collisions for som
that handles collisions between some obje

tible. Using lexicographical pruning, the general c ould win. If the

122

JP AND PRUNING

tance argument wins, then we would choose the more
specific Tunc to handle collision with destructible object.
In a real world scenario - at least on classical scales - interactions be-

tween objects are comm . A ball colliding with a wall of bricks (a

common de s simulations) should behave the same
way as a wall

least derivation- 0 mine the best multiple-dispatch. This

The least derivation-distance criteria, in a multiple-dispatch context,

implies that virtual parameters are not privileged by any order. A pro-

so it wouldn’t make sense priori ¢ irtual argument. The implicit
@object parameter does not subs » derivation-distance crite-
ria so that object-enclosed funcs bdominant syntax and
behave exactly as other subdomi dispatchi
Common uses of multiple-disy will not need the least derivation-
distance because most problems involving virtual objects are defined in
terms of the most-derived types anyway. The least derivation-distance

matching is there to provide a memorable viour for the in-

between cases.

Between|16.3 on the preceding page|a agel both

funcs have the least derivation-distance of of a tie, lexicograph-

ical ranking finally comes into play. [16.4 on t eceding page| wins the

match because it has one fewer argument with
of 1.

TONAL does notlet amatch failure in future-tense to fail silentl
dispatch is a form of pattern-matching; TONAL follows o esin

making pattern-matching complete, so that no opti

123

Structure

d for clarity where the grammar rule’s name is
cale degrees. For submediant scale degree tonics,

parenthesis.

are used, but with a special syntax to denote subsets and set differences.
The organization ofideas creates the structure of a program. The struc-

ture of the program defines how names are searched.

In all subtonics, the ject must not be an atom that is any of the

keyverbs. Even thoug of the subtonic scale degree prevents
syntactic ambiguity - t reat the first subject of a subtonic
as a keyverb - neverth ous for tool writers if it were al-
lowed, who would muc efer to be able to do a quick, context-ignorable,

scan for keyverbs.

Figure 16.16: Common ele
UnboundName

>> seg

ilroad diagrams.

BoundName
»p— atom >«

Clef
»»— Empty |p<

FilesystemURI
Pr— qtom |»«

al

124

A Iways introduced in some implied context, providing
the stemnt, so only the leaf of an atom is permitted. The name is not already
bound to an object, until a value or tensah is constructed for it, or a subject

to a tonic is an argu ensah parameter. Parameter names may

be preceded k variadic arguments.

A name that’s already bound to bject can be specified with as long

a branch as necessary to find it.

A clef marks the beginning of a section in a ic where an un-

limited number of tonics is supplied as

Included files are referenced using the standard URI for ulti

bility. It also signals, from the start, of the intent of t o be able
to be stored across networks, instead of added as an aftert

networked storage may include package managers.

125

Figure 16.17: Common Tensah elements railroad diagrams.
SubtonicTensahParameters

MinorSupertonicVirtua

T T
ParameterType

ParameterValue

Literal

ParameterType
P YP

— ParameterValue

N—{ MinorTonic-towel

N SubmediantLet-towe

—{ Mediant

Named parameters must not be one of the ke ecause of the
subtonic keyverb rule.
Named parameters without a type are fully ic parameters, ac-

cepting of values of any type and pre-past-tense.

126

16.1 Submediant Forms

eters, like parameter type values, serve as present-
tense overload pruning, so must be provided as present-tense values. Such
values cannot be provided programmatically - ie tonic - because there

would otherwise be differentiating between the syntax of a

named param yviding an unnamed parameter value.
ogrammatically does not allow TOWEL
transfers to avoi obvious, state changes in the meaning
of a program.
Defaulted para as specified by a let-submediant, also serve to
specify the type of the parameter.
Type parameters must be fulfilled by arguments that evaluate in the

present-tense.

Virtual parameters for types ify programs by their relaxed

overload-pruning rules. In regu pruning, multiple matches

for an argument trips the ambig quiring explicit conver-

sions to disambiguate. For types t ave dispa emantics, virtual pa-

rameters can be used to trigger t spatch pruning rules instead which

elide explicit conversions.

16.1 Submediant Forms

The verb position is the command to be e ted. Certain supertonics in
the verb position are like anonymous “ver

Submediants are semantically equivale local func that is im-
mediately evaluated. The local, immediate, tion - and func-ness
- places simplifications and restrictions on name-search and control flow

for ergonomic and correctness reasons.

Submediants don’t live beyond their immediate evaluati
TOWEL cannot be transferred. They cannot be giv
used later. Let-names from the encloser can therefore be

needing to be grabbed since there is no danger of dangling a

127

>diant Forms

y associated with closures.

nics are not allowed in submediants because they
ediate evaluation, and so don’t have any state

also reduces misreading the encloser as being

Submediants can, itly evaluate to some value. Like

ternary operators, or languages in general, subme-
diants are used to pro a value without the distraction of control-flow
structures. Jumps must stay within the submediant, unless it is a tripped

condition that is not trapped by the submediant.

Verbless submediants are a furt
The func verb and the clef can be omitted. eval-supertonic belongs the
encloser. The verbless submediant itself does not evaluate to any value,

just like any regular control-flow supertonic. The v ubmediant is

used to introduce a new TOWEL environ ces are used in C++
to create a new scope in which objects created are cleaned up at

the end of the scopes.

128

plification of the func-submediant.

onic Func

J ScoreBar
SubtonicTensahParameters

ScoreBars

MajorSupertonicInclude

ScoreBar
»p»— Clef >
" Hypertonic <
" MajorSupertonic-bars-singleton |/
“—{ MajorTonic
ScoreBars
»»>— Clef >«
Bar
MajorSupertonic-bars
SubmediantFunc-verbless
MajorTonic

TONAL treats all funcs as essentially the same. In langua

free/static member functions, non-static member fi
ing lambdas are different types. It makes higher-order fun

that take functions as parameters; sometimes called operator

129

17 SUPERTONIC FUNC

more complex to write generically and efficiently.
By treating funcs the same, higher-order functions automatically be-
come generic without having to account for differences between alterna-

tive machine entations for subroutines. Funcs become first-class

ic, instead of relegating to some type-erasing func-

funcs, and resumable funcs, from other funcs.

Resumable funcs cannot transfer TOWELs by default. Only when pa-
rameters and grabs h VEL can a resumable func’s TOWEL be trans-
ferred; such as to a t er. Resumable funcs that do not have
TOWEL transferred tate-memory allocation completely

elided in present-tense

A subset of major-¢ rtonics can appear as the only bar in a func.

For exampe, funcs can ontain just a grab-supertonic because there is
noreason to grab let-names and then do nothing. A single give-supertonic

may as well justbe an eval-supertonic ins . A goto-supertonic wouldn’t

do anything on its own. Any o supertonics wouldn’t do any-

thing on their own either. On t ertonics must be the only
tonics in a func if they appear confusing with mixing
hypertonics and other tonics.

Type-enclosed funcs cannot gr er than the implicitly grabbed
dominant-object. If a func must grab; it must be the first supertonic. Un-

like in languages like C++ that has the lambda capture specification at the

very beginning, TONAL takes the view that the par. of a func are

visually more important than grabs. Gra entation details of

ling binds, so it’s

130

17.1 Major Supertonic Push-In

unc-submediant can only appear as a bar.

onic Push-In railroad diagrames.

ReplacementValue >«

ReplacementValue
BoundName

Literal

MinorTonic

The let-name that the replacement value is being pushed-into must

have its object’s TOWEL, otherwise it trips an unatonable condition.

This supertonic triggers copy-constructio acement value is

not pulled-in. The copy-construction is ed with a valid @object.

If the replacement value is pulled-in, t e elided, and

it may be constructed in-place.

If the let-name’s object has not been read- between its construc-

tion and the push-in, the original constructio d intervening writes
may be elided. Special note must be taken of writes that actually reads

the object first, and thus cannot be elided.

If the replacement value is of a different type to , but the
underlying representation of the replacement value is the or the

replacement value’s type has relaying, then it triggers the rela

131

Supertonic Pull-In 17 SUPERTONIC FUNC

ajor Supertonic Pull-In

Figure 17.3: Major Supertonic Pull-In railroad diagram.
MajorSupertonicPullln

el

ject’s TOWEL, then the pull-in has no effect.
If the let- doesn’t have the object’s TOWEL, then copy-construction
is triggered.

One possible optimization that is enabled by this is lazy construction.

If the pulled-in object een read from, then the object may be con-

structed at the pull-in than where the func is being evaluated.

The AM can track the ing through the chain of func evalu-
ations, and elide all w ead. This is helpful in situations
like storing an object i e data-str re. The data-structure may have
some intermediate ac to perform - such as allocating memory - be-
fore storing the object in its ultimate destination. The AM can procrasti-
nate constructing the object until it is stored in its ultimate destination,

instead of constructing and the g TOWEL.

17.3 Major Supertonic

Figure 17.4: Major Superto

MajorSupertonicPushOut
o>{ pushout || Boundiame | >+

l

sh-Out railroad diagram.

Pushing-out an object that is not pulled-in, or y pushed-out, has

no effect.

132

17.4 Supertonic Include

pushed out can still be read after. Each read prolongs

the life oI the object by postponing eager destruction.

If the TOWEL roundtrip was activated as a result of the push-out, it

is also deactiva apletion of the roundtrip. The TOWEL

roundtrip may h another pull-in/push-out transfer.

17.4 Supertonic Include

Figure 17.5: Major Super

MajorSupertonicInclude
»—@ FilesystemURI

a

Include railroad diagram.

The major tonic is only used for importin ols from other source

files. No evaluation to a value occurs.

The symbols that are imported are idempotent. All includes of the

reasons.

133

Form 17 SUPERTONIC FUNC

inor Form

Figure 17.6: Minor Supertonic Func railroad diagram.

MinorSupertoni
j ScoreBar
SubtonicTensahParameters

ScoreBars

ertonicInclude

Creates a func on the fly, instead of as an enclosed object of a type. It

is the equivalent to la ctions in languages like C++.

17.6 Submedian

Figure 17. bmediant Func railroad diagram.
SubmediantFunc
[J MajorSupertonic-bars Bar
L[func)— Clef i

l

Verbless submediant funcs do n luate to a value and so can only
be used like a major tonic.

All names are grabbed by default, since it is intended to be the same as

a compound-statement in languages like C++. This i ince the func
is not transferrable, and not even bound . Submediant funcs
are really just syntatic sugar, but classified as a r the purposes of

categorization in the scale-degree scheme.

134

ScoreKey

pertonicInclude

»»<— SupertonicReaders

— SupertonicWriters

\— MinorSupertonicVirtua

N Mediant

N Submediant-keys-towel

N MinorTonic-towel ——

" BoundName)
N Unpack /
\—| Literal J
@
a
The parameters and base types subtonics and th me from
an include file instead of having to be written inline. This ki project

organization can help with shorter processing times and IDEs

135

18 SUPERTONIC TYPE

irtual access of a base has a different meaning in the base subtonic
compared to its use in the Keys. In this context, it refers to virtual inheri-

tance, and is the way to solve the diamond inheritance problem.

n permits derivation from literals. It is the logical exten-
sion of inheritance of types where the value of the base object is known
in present-tense. Such base objects are not modifiable, even in present-

tense, to avoid over-co icating the language with changing type bases

in present-tense.

Types that derive from an archetype must have a size, and may be pre-
served into future-tense, unlike arche ut the archetype base object
isnever preserved, so its size rchetype values must always be
in present-tense, but types der es can straddle between
future-tense and present-tense, etype base objects does not

require a present-tense value. Th eeps track of this.

Types derived from mediants are themselves nts, and subject to

the same limitations as mediants.

136

ajor Supertonic Type railroad diagrams (continued).
ScoreKey

pp— Clef

>«

ic-keys-singleton-towel

(..

ScoreKeys

»pp— Clef

MajorSupertonicGrab —f

»L MajorSupertonic-keys-

Only let-, func-, type-, and ac ontrol major supertonics can be a
key.

A base-object may have a func that is a good default interface that the

derived-object would want to advertize as its o sahook from the

base-object. As a shorter alternative to wrapper in the derived-
type that simply calls the base-object, th ig'tan be used to

hoist the func. This does not result in incre e type.

18.0.1 Hooks

Hooks are not resumable, so must not attempt to evaluate the give- and

wait-supertonics. Hooks cannot grab let-names.
Only construction hooks can be treated as a rea e for an
object of func type. Such objects behave as a factor

This is to aid the simplicity of generic code that takes factory-

137

18 SUPERTONIC TYPE

Figure 18.3: Conversion hook.

MajorSupertonicConversionHook
(@ HJ{cemerone }{0)

e triggered when an object of one type is con-

Conversion hooks must accept just one argument, which is the type of
the desired type. Any other number or type of argument trips an unaton-

able condition.

No other let-name he @ character, but the conversion hook

can be overloaded for sired types. There can be no generic
catch-all conversion h ersions can cause issues, and so

must be carefully cons ed.

Conversion hooks a pically not necessary for converting an object
to one of its base objects. For overload-pruning, the explicit construc-

tion of a base-type from an object is merely.for disambiguation and does

not involve the creation of an a S0 no conversion needs to be

done.

Conversion to a base object e optimizations in the

memory layout of the underlying ome AM implementations may be
able to flatten out an object’s hiera I memory to eliminate padding,
but if conversion to base type is forced, then that prevents it being flat-
tened, as it must maintain its own separate internal layout to allow for

extraction as its own object.

Conversions to archetypes is the mec ich the AM differ-

entiates between present-tense and future-tense s. All archetypes

must have present-tense values, but types derive archetypes can

138

0 use an object of a archetype-derived type in present-
tense, it'must be capable of being converted into one of the archetypes. A
conversion hook should trip a certain atonable condition to signify to the

AM that an object is nse. Types with multiple enclosed objects

could conver ense values.

converting an object to a List, and un-

Types that can be eonstructed from an archetype that it was converted
to may be used by the AM to memo-ize computations in order to speed up

a present-tense processing session, perhaps even across time-separated

sessions such as incremental bui

Figure 1
MajorSupertonicVerbHook

An object of a type with a verb hook can b in the verb position

of a tonic. This is equivalent to function-objects in languages like C++.

Lambda funcs, ie funcs with grabs, are great for quickly en

localized functionality, but if they get too complex
their own type. This enables simplifications, such as'splittin

overloads, rather than crammed into one func.

139

18 SUPERTONIC TYPE
Figure 18.5: Redirection hook.

MajorSupertonicRedirectionHook
*@— WildCard <n parameters...>

WwildCard

Branch redirection would open up a can of worms, as it would allow

the possibility of bypa TONAL’s fundamental atom semantic, where

each node in the ato enclosed object in the prior node. Pro-
grammers would wo assumptions, and breaking such as-
sumptions would be ec e wildcard can thus only match
a name that is a single

The characters (,), d’, are not allowed in atoms, so it would be
impossible for the wildcard to contain those characters. Specifying those

characters in the wildcard trips an unat le condition. The strings Q@

and @ can be used in the wild -or-more and single-character
matches, respectively. They a e x and ? wildcard char-
acters in languages like Bash s ot use those characters
for wildcards as they are valid in

The Tensah enclosed @jective
card match in total. There are no capturing matches as there are in regex.

Present-tense string manipulation functions should be used to interpret

the matched name if such trickiness is needed. T me qtom will
never be empty, just like how no atom-n ero characters long.
If an object is used in the verb position, and the o verb-hook, then

that trips an unatonable condition, rather than i itly, and confus-

140

direction-hook.

parameters are entirely up to the hook implementation. There are

no special AM parameters for redirection hooks.

Hooks, especiall -hooks, are never redirected. This pre-

vents almost 1 ecursion, and discourages overly com-

Redirection h t herited. This solves the issue of redi-
rection if multiple ‘ rection hooks are inherited from. This
simplifies the imple ation of wrapper types (the main use case for
redirection hooks), especially in the case of wrappers of wrappers. The

programmer has complete control of how redirections are forwarded, in-

stead of fighting TONAL rules.
Figure 18.6: .

MajorSupertonicConstructionHo

*@ ConstructionNa arameters...>

MajorSupertonicConstructionHo i

»@— ConstructionNa

MajorSupertonicConstructionHookCopy

»—(Enp_c)— ConstructionName ConstructionNa j @—N

onstructionParameter

SubtonicCopvConstructionP
»»— UnboundName-pack |—

ConstructionName
>>—(<enclosed type name>)—N

All types have an identity, copy, and default co ok. They
are initially generated by the AM. If the programmer creat cs with

the exact signature as those hooks, then they replace the gener

141

18 SUPERTONIC TYPE

es programmers just wants to use the AM-generated versions of
those hooks, but doing something extra after construction. They don’t
want to have to re-implement the natural versions of those constructions.

In the identi and default construction hook, evaluating the @type

pective arguments will use the respective AM-generated

an delegate to other construction hooks, but not
indirect.

snot bifurcate construction and assignment in the way lan-
guages like C++ do. There does need to be accommodation for potential
optimizations that takes advantages of the difference between construct-

ing an entirely new obj as opposed to replacing an existing object.

In the copy-construct the @object is invalid in present-tense,

throughout the entire when constructing a new object. The
@object is valid in pr acing an existing object. Even if
the @obiject is invalid on, its enclosed objects can be
touched once they are

The @object can only be invalid in constructions of new objects. In
every other enclosed func, the @object is always valid in present-tense

and beyond.

Types that are solely-deri m one archetype have AM-generated

identity construction hooks th e-tense value of the de-
rived type. The type must provid default-construction hook that
takes a present-tense value to cons its archetype base-object in order

to construct a present-tense value.

Figure 18.7: Transpose construction hook.

MajorSupertonicConstructionHookTranspose
ConstructionNa <n parameters...>

al

es can be performance gains for objects stored in ar-
rays if there is an array for each enclosed object, instead of one array for
whole objects. This is known as the structure-of-arrays, as compared to

arrays-of-structures. Son fits include tighter packing of data. Some

access pattern enclosed objects of separate objects are
compared in sO those members are all in their own ar-
ray. Another use e know as Entity-Component-System.
An Entity could be its enclosed objects as Compo-
nents spread out ov

The transpose-construction happens in the same order as ordinary
construction, but the AM pauses the construction after each enclosed ob-

ject. The new constructed enclosedi@biject is then copied into the rest of

the array. In special cases, this co ¢ a highly optimized byte-wise copy,

instead of copy-construction of tt

Figure 18.8:

MajorSupertonicDestructionHoo
»—(E%c)— DestructionNa
DestructionName

ConstructionName >«

=

All types have a destruction hook. Itisi generated by the AM,

but a programmer can replace it. The sam ruction hook applies
for objects created using the transpose-construction hook with the same-
enclosed-object-at-the-same-time semantic.

Unlike in languages like C++, objects cannot be viewed afte uc-

tion hook runs - such as the object being pushed-in t c-which
means destruction hooks don’t have to clear the values of ts, sav-

ing some performance. Only objects with sensitive data, or ook-

143

18 SUPERTONIC TYPE

cleanup func, need extra attention in destruction.

Figure 18.9: Relaying hook.

gHook
e j)

SubtonicRelayingType

onick ingType
UnboundName-pack

The func-name sy ame as destruction because relay is se-

mantically like a dest old object and replaced with a new
object of a different t

For relay type-pairg§ that are derived from one, and the same, base-
type without additionz closed objects and/or custom construction or
destruction hooks, in the derived-type - called a persona-pair, the AM gen-

erates a relaying hook, which can then b laced by a custom hook with

the same signature.
For relay type-pairs that ar ersona-pair, but have the same type,
order, and alignments of enclose e also treated as a pseudo-
persona-pair. The AM does not ge e a hook, since the type-pair’s lay-
out could be coincidental.
For relay type-pairs that aren’t persona-pairs and pseudo-persona-pairs,
but are of the same size - called a silhoutte-pair, generally should not be

relayed. Some machine specific operations may r eating an ob-

ject of one type as a sequence of bits of s e. Relay hooks for
silhouette-pairs is tantamount to low-lev g that you would

find in languages like C.

144

tette-pairs are TONAL’s way of short-circuiting the pro-
cess of formalizing machine semantics into its type-system, rather than
simply of way of working around the type-system. As is the TONAL style,

it is much prefered to a machine-semantic into a TONAL concept

as soon as pos nit to full power of TONAL to encode re-

lated behavio : e; as opposed to trying to do everything

Custom relayin ach the existing object before the
relayed object. As so the custom hook touches the relayed-object, the
expiring-object is considered destroyed, and touching the expiring-object
will trip an unatonable condition.

For custom hooks for persona- and pseudo-persona-pairs, in gen-

eral, no data movement is necess a custom hook is useful simply

for asserting that the relaying of t mpe to the relayed-type does
not break invariants. Once the ouched, or the custom

hook has finished evaluation wi touching elayed object, then
the AM considers the relaying to

Only custom hooks for silhouette-pairs are allowed to be implemented
with a hypertonic in order to do implementation-specific things like hard-
ware access.

For persona-pairs or pseudo-persona at have incompatible in-
variants; silhouette-pairs; and dissimilar i rogrammers
should not use relay-hooks unless necessa uction and conver-
sion hooks to achieve the same effect is pre . If, after considera-
tion, it is decided that relay-hooks are still nece , then the relay-hook
should adopt the idiom of moving whatever enclosed objects are needed

into temporaries, then applying them to the new object.

Corollary 1. Funcs in the derived type, not to menti
not be called while constructing the base type, because the ed type

hasn’t been constructed yet. Some type designs rely on the bas

145

18 SUPERTONIC TYPE

rchestrate some setup, of which the derived type provides setup
customizations. This is typically solved, in languages like C++, by having
a separate setup function that has to be manually called, which can be

error-prone itives like the Curiously Recurring Template Pattern are

d hard to teach.

a, virtual methods can be called by the superclass,

lass being implemented correctly, which can be

to be evaled in the base construction, and for the programmer to nominate

a func as the separate post-construction setup function.

Any func from the d type can be evaled in base construction as

long as it doesn’t touc d object. Such funcs are mainly factories

designed to be customi

To nominate a func ion, it must be the last func evaled

in a construction, and st explicitly use @derived as the dominant ob-
ject for the func. The inated func’s evaluation is postponed until the
most-derived type is fully constructed. Such a func must only be called once

during the entire construction process, bu h construction may evaluate

one such func, even if constructi uated by other constructions.

In the case of nominated virtu s, the most-derived override is the only

one that’s evaluated. The order [set of nominated funcs
is evaluated in the construction o ominated funcs can touch any en-

closed object.
Destruction has the same restrictions, but inverted. Some types needs to

be cleaned up from derived-to-base before being destroyed, and at each de-

struction, parts of the object will have already been d . Any derived-

type func that is evaluated in destruction ch any enclosed ob-
ject. The nominated func must be the first each destruction.

Each nominated func must only be evaled once. The in which the total

146

uncs is evaluated in destruction order, immediately before
destruction. Nominated funcs can touch any enclosed object.
Ifone nominated func, in construction or destruction scenarios, are called

from another nomina hen it would also trip an unatonable condi-

n the entire construction or destruction

phase
Relay-hooks e (e-destruction and post-construction func
nomination scheme [and relayed-type, respectively. The

pre-destruction nom d func is the @derived-dominant func as the first
tonic, and the post-construction nominated func is the @derived-dominant

func as the last tonic.

18.0.2 Access control

The classic access modifiers - use inst improper use and ac-

cidental coupling - are public, pri Languages like Java
and C# have even more, for pac s and other levels of organization.
Other keywords in other languag at also serve as access modifiers of
sorts are abstract, de fault, extern, fileprivate, final, friend, inline, internal,

open, override, readonly, sealed, static, thread_local, usig@, virtual.

Many of these keywords are strictly ed as access control

modifiers in those languages. TONAL ta point of view that the no-
tion of access is more extensive than just a ames are just
one of the observable structures of the AM. other main observable
structure of the AM is the dispatch. Being o able means access to
them must be disciplined and restricted.

The classic access modifiers can at times be too broad, and at other

times be too narrow, requiring workarounds like friend acces

token objects, or very intricate rules with intricate s that is
easy for computers to check but impossible for programme

ber.

147

18 SUPERTONIC TYPE

s-control in programming languages are not for security, but the
same principles from access-control-lists can be re-used for clarity. Access-
control is simple: what we are controlling access to, what access capabil-

ities are allg d what is allowed to access. They should be specified

as >, while avoiding detail bamboozlement.

uses a stack-like database structure. Every type
cess-control database. Every access-control database for
a type starts empty from the beginning of the base subtonic. Modifying

the access-control database can utilize the stack-like semantics to avoid

repetition, while still asonably simply to reason about whatever

has access to whateve whatever capability.

The stacked appro Iso makes it easier to group enclosed objects

by permitted access, wliich often coincides with grouping by related func-

tionalities.

Dispatch access-control foll scheme of a single-use

supertonic that only applies to t quent enclosed Tensah. Unlike
name access-control, it is much important to prevent accidental

granting of dispatch access.

Name-search and pruning are perfor ccess-control check-
ing. This prevents access-control from being inter with a new over-

load with more capabilities.

148

18.1 Supertonic Readers

ic Readers

Figure 18.10: Supertonic Readers railroad diagrams.
SupertonicReaders

reader

Accessor
@object

@type

AccessExpression
Prb— qtom >«

The readers-supertonic without subjects resets t
initial state. The initial state only allows access to names fro in ton-

ics enclosed by the type. This is exactly equivalent to C++ cla

149

onic Readers 18 SUPERTONIC TYPE

ng is private by default. Additionally, in the initial state, names
can only be accessed implicitly or explicitly through the @object. This is
exactly equivalent to C++ functions and data being non-static members of

a class.

the default class membership in C++ is differen-

bership by the term “non-static”, when they are

a readers-supertonic until the next readers-supertonic modifies the state.
The current state may be a useful configuration for a subset of names, so
it can be pushed ont ical stack of the access-control database to
use again later. The p may be named for documentation and
targetted popping.
Popping an empty onable condition.

Popping to a name ck-entry pops all intervening states until the

named stack-entry is ed. If the name does not exist, it trips an una-
tonable condition.

Readers can be inserted or deleted f the current access-control

state. Readers are somewhat t of friends in C++, in that you

specifically nominate what is itted access. In C++, friends of a class
can access any member in a cla ccess-control. However
full access is almost never necess d opens the door for unchecked,
incorrect, usage. Readers can only the names for which they were
permitted access. If a reader is both 1iserted and deleted, it trips an una-
tonable condition.

There are special shortcuts to specify a large n f readers that

are familiar to other languages.
@object has access to all names by default. Th ct dominant of an

atom is the @object. Names can be accessed via an ct, either explic-

150

ic members. In TONAL, it is termed @object-accessed

18.1 Supertonic Readers

with the @object having the TOWEL of all the names.
If a funC1s evaluated via an @object (implicitly or explicitly), then name
access from within the func is also through the @object, unless explic-

itly stated otherwise. e equivalent of non-static members in lan-

ames by default. The type dominant of
an atom is the @ ojiven access, this is the equivalent of
static members in ++ allows static members to be
accessed via an obje pointer, but always refers to the static member.
Unlike languages like C++, both the @object and the @type can enclose
objects with the same name, and they view separate objects. This is to aid

generic programming. TONAL typ e present-tense singleton objects,

so there is no reason why types ¢ passed into generic funcs and

have algorithms that work on ob on types.

TONAL does not have a specifi tly mirrors C++’s function-

scope static variables. The same ¢ t can be achieved by giving reader-

and/or-writer access to only @t and the enclosed func that the en-
closed object is intended for. It is slightly more cumbersome, but it does

have the nice property that the enclosed object will be initialized when

the enclosing type is, rather than the rand enever the func is
evaluated.

For names with both @object and @t minants can-
not access names through an @object, but dominants must only
access names through the @type explicitly.

Access for derived types is granted through @derived readers. It is the
equivalent of protected access, in languages like C++. Permitting access

only to derived types may not be as high-coupling as permitti

thing access, but it is still notoriously dependency-i uld still
be better to name types and funcs directly to give access to.

@object and @type access is the equivalent of private ac pro-

151

onic Writers 18 SUPERTONIC TYPE

ust on their own. To give general access beyond select types, an
access-expression can be given, which is just a qtom wildcard. TONAL
tries to reserve as few characters as possible, which means there is lim-

ited option fo ards in atoms. Qtoms have no such restriction. Since

dden in non-@jective names, and parentheses are
miters, they are the natural choice for wildcard

e character wildcard. @@, for any-length charac-

rooted branch of a name.

18.2 Supertonic

Figure 18.1 iters railroad diagram.
SupertonicWriters
writers

ccessStack

AccessState

All writers have reader acces riter is deleted from the current

state of the access database, and o never added to the readers in

the current state, then the implicit r r access is also revoked.

Writers, applied to funcs, means the func can be evaluated with a

TOWEL-owning dominant. TOWEL transfer rules sti y, so the func

will still have to pull-in its @object before.i anything.

Deleting writer access to a let-name is the e ent of const data

members in languages like C++.

152

18.3 Supertonic Virtual

1c Virtual

Figure 18.12: Major Supertonic Virtual railroad diagram.
MajorSupertonicVirtua

Hooks cannot be given dispatch access, or will trip an unatonable con-

dition.

Access to a dispatch is not sta 1e virtual-supertonic must be

followed immediately by a, and ¢ to that, Tensah. This pre-
vents accidental granting of acce of more Tensahs than
expected.

The applicable func is inserted into the dispatch-access database to en-
able it to be overriden by funcs in derived types, at any level of derivation.

This is equivalent to the virtual keyword in langua e C++. Ifitwould

have the affect of overriding a virtual f e type, then it trips
an unatonable condition.

The applicable func can be deleted from i essto prevent
being overriden by funcs in derived types. equivalent to the final
specifier of member functions in languages 1i

The applicable func attempts to override the base type’s virtual func,
if neither inserted nor deleted. If there is no func in the base type that

is overridden by the applicable func, this trips an unatonable

This is equivalent to the override specifier in langu
A derived type’s access to override a virtual furnc is no

reader or writer access. It is in fact recommended to keep vi

153

onic Virtual 18 SUPERTONIC TYPE

solely @object-accessible. This prevents derived classes from
evaluating the base virtual func directly, likely outside of the constraints
of the base type. The base type typically provides virtual funcs as cus-

tomization he 1t it will evaluate in some precisely orchestrated man-

hod Pattern is one such example, and one could

ual-Interface Pattern is a special case.

(some would argue anti-pattern) that re-
quires ov ding funcs to understand why and when to call the base
type’s virtual func, but these typically have very narrow type hierarchies

intended only for highly specific implementation needs.

Destruction is auto handled with dispatching if a type has any

virtual funcs, so the v nic is not needed for destructors, un-
less the destruction i func. If a destruction is deleted
from virtual-access, it ed-types from providing over-

rides. The implicit des ion of the derived-type is still virtual.

All hooks, aside from destruction hooks, cannot be tagged virtual, oth-

erwise it trips an unatonable conditi

The applicable base object, ensah or a present-tense

value, is neither inserted nor de atch access. Rather; it is to

signify that the base object partic in diamond inheritance.

All types are dispatch-acessible default, in the sense that it is al-

ways possible to derive from a type with, or to impart, dispatch ability,

so inserting into dispatch-access is an unatonable n. If deleted
from dispatch-access, then the type can from. This applies
whether or not the type has any virtual funcs de This is the equiva-

lent of the class/struct final specifier in languages 1

154

18.4 Supertonic Push-Out

1c Push-Out

Figure 18.13: Major Supertonic Push-Out railroad diagrams (key).
MajorSupertonicPush@

The immediately owing let-name’s TOWEL is not tied to the en-
closed object, unlike normal let-names in types. This also disables any
TOWEL transfers for any object of enclosing-type, tripping an unatonable

condition if attempted. The let-n ust be constructed with a value

provided outside construction, it trips an unatonable condi-

tion. This is the equivalent of r ified data members in lan-
guages like C++.

If the provided value was pul WEL round-trip on

the enclosed let-name occurs afte destruction of the enclosing object.
Such usage patterns are useful for self-contained, slightly longer-lived,
operations on an object, such as builders, otherwise known as fluent-

interfaces.

18.5 Supertonic Include

Figure 18.14: Major Supertonic Include

MajorSupertonicInclude
»(m)— FilesystemURI |-«

ad diagram.

This section intentionally left to this one sentence.

155

Form 18 SUPERTONIC TYPE

inor Form

5: Minor Supertonic Type railroad diagram.

ScoreKey
ensahParameters —j L BaseTypes —j

ScoreKeys

Some generic algorithms may take a type argument, but the type may
not have any usage outside of a func, so create a type inline if it otherwise

would be hard to justi ing a fully-fledged type.

18.7 Submedian

Figure 18.16: Submediant Type railroad diagram.
SubmediantType

ek

Create an object of a nameless type.

Not much point for access control supertonics, but it’ssharmless to do

S0, so it is allowed, to simplify AM impleme
Possible to inspect @type object.

Like Java.

156

onic Let

Figure 19.1: Major Supertonic Let railroad diagrams.

upertonicInclude

UnpackBinding

SubtonicBinding]

SubtonicBinding
UnboundName

MediantPushIn

Skip

Names introduced by the let-supertonic can bi
constructed as its subject, or to an already existing let-na

parameter names. Of the latter kind, the let-name does not h

157

Supertonic Include 19 SUPERTONIC LET

OWEL, much like with parameter names. The former and latter
kind are referred to as pull-in binding and push-out binding, respectively.
Pull-in binding has the object’s TOWEL, where as push-out binding needs
to be pulled-i ating a copy - just as with parameters, when desiring

1odified.

any push-out bound let-names, but only one pull-

s prevents aliasing, and allows for certain memory

Figure 19.2: Include railroad diagram.
MinorSupertonicIncl

lesystemURI |«

Programs consists not just o uctions - commands - but also of

data. Data can become part of the rocess so that TONAL programs
can be driven in the present-tense.

TONAL only understands a limited number of data types: raw binary,

raw text, and TLDR. Raw binary is interpreted as Longs - each

long representing an octet. Raw text is j s a Qtom. TLDR is
interpreted as an object of unspecified t nnot be modified

and, being present-tense, will not be preserved i final program.

158

19.2 Mediant Push-In

am derives meaning from the data, so the data lives on
in the structure of a TONAL program.
One use of present-tense data is for digital assets. The AM is thus made

aware of digital asset the program itself, potentially saving the

eparse the data every time the program

runs
Structured p S ata can be used as configuration. This
is not your averag ogram options. Entire structured

Raw text data is completely free-form. Combined with present-tense
parsing, TONAL programs can be augmented with domain-specific lan-
guages with wildly different syntz outside of TONAL. As with all lan-
guages, no single syntax can ho ide safety, terseness, and ex-
pressiveness for all types of pro For example, declarative
languages specify relationships, languages (like TONAL)

specify algorithms. Imperative co obscure relationships

between entities in the quest for formance, so having a declarative

DSL can help the programmer see an architecture from multiple facets.

19.2 Mediant Push-In

Figure 19.3: Mediant Push-In
MediantPushIn

m BoundName J—N

An object can be unpacked into new let-names a et-names.

159

>diant Form 19 SUPERTONIC LET

unpack.

Nested unpacking is not directly supported by TONAL, to keep the er-
gonomics of names maintainable. If unpacking of objects multiple levels

d, then it is up to the programmer to explicitly do it

npacked. TOWEL rules ensures that no frivolous

19.3 Submediant Form

Figure 19
SubmediantL
let

ediant Let railroad diagrams.

ImpliedBi
BoundName

Literal

MinorTonic

Only used for default paramete Tensahs and the range sequence

in loops. In both cases, the name is s ed outside of (immediately pre-

ceding) this tonic.

The name is bound as late as possible, which hen the eval-
uation happens. Default parameters ar the values at the
location of the Tensah’s evaluation, as opposed t onstruction of its

enclosing object.

160

[IC “()” (THE LIST SPECIFIER)

supertonic “()” (the list specifier)

pecifier railroad diagrams.
MinorSupertonic

ListSubject
BoundName
Literal
MinorTonic
The atom “list” is a very useful gene , S0 TONAL avoids using

that atom as a verbh. The clef is obviously so that isaiged as the verb

to construct a list.

TONAL lists do not act as a container, like or vectors or lists in

many other languages. TONAL lists are more like a way of being able to
manipulate syntactical sequences of tonics, names, and literals. If a list

subject is pushed-in, for example, it is not pushed into the list

pushed-into whatever other tonic that list is used ists are
searched-for in the immediate scope to avoid accidently pi up the

name that would be found starting from where the list ends u

161

21 SUPERTONIC GRAB

pertonic Grab

Figure 21.1: Major Supertonic Grab railroad diagrams.

Grabbing names f le into a Tensah is a great way of com-

posing data and custo iour that can be passed into generic
interfaces. It is a fast eap, stateful, objects.

Grabs are just like meters when it comes to TOWEL rules. Grabs
must be pulled-in to a local copy. Grabs are candidates for TOWEL

roundtrips.

Grabs that aren’t pulled-in, or are rou ipping, render the grabbing

Tensah TOWEL-untransferrab mselves cannot be pulled-in,

unless also pushed-out and tr g the roundtrip of the Tensah.

Grabbing the dominant @ob kes the name-search be-

have the same as a regular type- sed func. All dominant funcs im-
plicitly grab its @object. TONAL d t support the concept of partial-
objects, so Tensahs that grab the @object cannot transfer TOWEL, unless

it is a TOWEL roundtrip.

A grabbed @object need not take up memory in (eg, a pointer)

if the grabbing Tensah is accessed via a ch an optimization
is possible if the grabbing object is enclosed by object’s type, as is

the case with enclosed funcs. Enclosed objects that the @object acts

162

21.1 Mediant Let

ghter-weight proxies make designing extended object-
systems; or meta—objectsﬂ such as those found in Smalltalk or LISP CLOS,

much more resource efficient.

Let railroad diagrams.
MediantLet
let

GrablInitialValue >«

GrablnitialValue
BoundName

Literal

MinorTonic

Being able to grab a value tha onstructed in the grab-supertonic it-
selfis provided for convenience. It is equivalent to constructing an object,

and then pushing-in to the grabbing Tensah, but with the added benefit

that the name is only lexically valid insi . The corresponding

feature in languages like C++ is the init-c in lamb

7In the sense of observable message passing between object ports.

163

22 TONIC

Control Flow

ethod for principled flow of control is the sub-
g introductions start with choice and repeat,
but the st ngram should be considered the primary tool for program-
mers. Breaking down a large task into smaller ones, simplifies, and tight-
ens the focus of sections of code. In certain cases, such break-downs al-

lows a machine to perfonfiheach section concurrently.

Subprograms can X ed in such a way that no actual change in

the flow of a program ens, such as inlining. Subprograms in
this context still have ng focus. In TONAL, some subpro-
grams can be evaled i d can be completely eliminated

so inlining can be mad

22.1 Minor Supertonic Push-In

Figure 22.1: Minor Su

MinorSupertonicPt

al

nic Push-In railroad diagram.

All objects constructed by a minor tonic is implicitly pushed-in, be-

cause there isn’t a way to reference the object. In cases, objects

must be explicitly pushed-in. Objects m -in by let-name, to

avoid the complication of having to track the of objects being

passed into other tonics and then passed back out.

164

22.2 Minor Supertonic Pull-Out

-name is in past-tense immediately at the opening a
parenthesis of the enclosing major tonic. It prevents a let-name being
used in any other position in the enclosing major tonic and minor ton-

ics. This avoids any i bout whether a let-name can be used as

another subje in, and what happens in the receiving

tonic where m ames refer to the same object, but one
name has lost TC be such a rule, but for ergonomics, it’s
better left as a co

The tonic that the ect is pushed-in to now has that object’s TOWEL.

22.2 Minor Supertonic Pull-Out

Figure 22.2: Minor Supe
MinorSupertonicPullOQut
pull-out)— BoundNam

ut railroad diagram.

Pull-out marks the let-name for a potential TOWEL round-trip. The re-
ceiving tonic may or may not utilize the round-trip it may not take the
object’s TOWEL. At most, it can take a co ect identified by the
let-name, and have the copy’s TOWEL, i allows copies.
Whatever happens to the object inside the invisible un-
less the TOWEL round-trip is complete.

The let-name being pulled-out must have ject’s TOWEL, other-
wise it trips an unatonable condition.

A pull-out minor supertonic can be considered to be implicitly pushed-

in for the duration of the enclosing major tonic. This means al

the same enclosing major tonic cannot view the sa
the let-name is considered to have lost its TOWEL due to bei

TOWEL is restored after the major tonic has been evaluated.

165

23 SUPERTONIC EVAL

pertonic Eval

Figure 23.1: Major Supertonic Eval railroad diagrams.
MajorSupe
'

Literal

MinorTonic
@
a
The eval-supertoni nc evaluates to. All funcs are
evaluated to some val ometimes a func just ends when there are no
more commands left ocess. This implicitly evaluates to an empty

present-tense list. An eval-supertonic with no subject also evaluates to an

empty present-tense list. An eval-supertonieimay evaluate to an explicitly

provided value.

A func can have zero, to eval supertonics. All eval supertonics
in a func must evaluate to the s resent-tense. This might
involve an explicit conversion t se type. In such a case, if all the
derived types of all the possible eva ns are known, then it is possible
for the AM to reserve space in the present-tense that can hold the largest
of them.

A func can evaluate to a value at any point in it which event

the func is finished and no other comm evaluated. If there
are commands after an eval that never get evaluat any circumstance,

that trips an unatonable condition.

166

resumable if it also evaluates a give-supertonic. The
eval-supertonic then finalizes the evaluation of a resumed func. All give

supertonics must also evaluate to the same type as all the eval supertonics.

A func can evaluate to multi o same time if the eval-

supertonic subject is convertible of values.

Sometimes a func evaluates to present-tense values. The A

mize further evaluations of the func in present-te s it com-
pletely if there is a one-to-one mapping from the func’s enc

and arguments types and/or values.

167

24 SUPERTONIC IF/IFF

pertonic If/Iff

I
ElseScore

Bar

MajorSupertonicLet j

ElseScore

>>—[else)— Clef

Predicat

e

BoundName

Literal

MinorTonic

Making decisions based on the fthe world is the mainstay of con-

trol flow. The predicate of an i f-sc ts that state for meeting certain
criteria and evaluates only the bars of the score that meets that criteria,

or the else-score if none of the criteria are met.

The predicate evaluates to some value that is ible to a long
archetype value, where the value 0 mea eria is not met, and
any other value means the criteria is met. If the is not convertible

to a long archetype value, then it trips an unatonab

168

Predicate }— Clef (

s permitted a let supertonic; the object(s) to be cre-
ated is completely bound to the if supertonic’s evaluation. This avoids
objects being created solely for the purposes of the i f supertonic to have

its TOWEL longer than ary. A common case is the creation of an

utex that should only be held for the
shortest amour . The object’s TOWEL continues to the

end of the super 50 can be used in subsequent i f-scores

have, since the S-expression syntax renders it unnecessary. Any :fatom
that appears as the top-level subject of the i f supertonic is considered the
start of a new decision branch; lse atom as considered the start
of the fallthrough decision bran no ambiguity, as plain atoms

are not allowed in the bars.

The clef to introduce the bars i signed to be omitted

in the way that some languages al mitting braces for single-statement

blocks. This is to aid visual scann

The iff variant of the supertonic r at one branch must be

taken, its name being a reference to the if-and-only-if.
This can be used to force the complete chec criteria to ensure
that no gaps in logic exists. If the criteria-ra re known in present-

tense, then an uncovered gap trips an unatona ndition.

In certain cases, the AM can optimize an : f-supertonic to a jump-table.

This can mildly speed up some code.

TONAL does not have a switch or match state er lan-
guages. The features of both - jump-tables, and forced gap c e-are

accounted for by the if and i f f supertonic.

169

>diant Form 25 SUPERTONIC LOOP

ubmediant Form

Figure 24.2: Submediant If railroad diagram.

I
ElseScore

Subsection intentionally left to this one sentence.

25 Supertoni

Figure 25.1: oop railroad diagrams.
MajorSupertonicLoo

LoopScore |«

LoopTest
LoopRange
»»— UnboundName antLet >«
LoopTest

"L
MajorSupertonicLet

LoopScore

[— Bar —]
p»— Clef >«

L B
MinorTonic

Doing the same task over and over is the pur f machines. Re-

170

plete when some state is reached. A common class of
task repetition is the application of some action(s) over a sequence of

things until the sequence is complete.

The loop-s e general repetition of tasks, and the

common repetl nce - called a range.

for defaulted func a ents. The range loop implicitly introduces a let-
name that views the current object in the range being looped over. TOWEL
rules means that if the object in the range itself has TOWEL, then it can

participate in a TOWEL round-tri erwise, pulling-in then pushing-

out the implied let-name follows ules for copying.

The range object must be con chetype value. It may
be empty. If the value is not con chetype value, then it
trips an unatonable condition.

The general loop has an optional /et-supertonic predicate that is

the same as an i f-supertonic, but with an a after-loop action

that can evaluate some state to update t p’s completion status. The
predicate checks the loop’s completion sta oop if it eval-

uates to 0.

The after-loop action is evaluated after the bars. Then evaluation con-
tinues back at the predicate, followed by the bars, if the loop has not com-
pleted.

A loop may be unrolled for optimization. Loops

ay als artially

unrolled if the objects in the range are of mixed type.

171

onic Stop 25 SUPERTONIC LOOP

upertonic Stop

ajor Supertonic Stop railroad diagrams.

JN

Loops may need ta 2 stop-supertonic exits the immedi-

ately enclosing loop, i . The after-loop action is not

evaluated if a loop is s

Sometimes it is necessary to exit nested loops to any arbitrary level.
Looped tasks that support this can name the loop using a label supertonic

thatimmediately preceeds the /o . The stop-supertonic’s label

subject specifies which enclo evel of labeled nested loop to exit to.

Evaluation continues immedia named for stopping.

If there are tonics that are ne luated due to being jumped over

under any circumstance, that trips atonable condition.

Labels that are outside of the enclosing func-supertonic, or the enclos-

ing verbed-submediant, are not eligible destination labels, and will trip

an unatonable condition.

If the destination label is outside of an enclosi -supertonic, then

the finally-bars must still be evaluated.

172

25.2 Supertonic Next

tonic Next railroad diagram.

Sometimes it is only necessa uate a loop’s task only partially

and fast-forward to the subseque The next-supertonic causes
the evaluation to fast-forward to tion of the immediately
enclosing loop without evaluati ubsequent the next-

supertonic. The loop further eval s as normal.

Sometimes it is necessary to fast-forward an outer loop from within a

nested loop. The label’s name is also used for this purpose. The enclosing

loops are stopped up to the level of the loo fast-forwarding.

Then evaluation continues at the after-lo ion of the named-loop. The

loop further evaluates as normal.

If there are tonics that are never evaluat to being jumped over

under any circumstance, that trips an unaton ondition.

Labels that are outside of the enclosing func-supertonic, or the enclos-

ing verbed-submediant, are not eligible destination labels, and wi

an unatonable condition.

If the destination label is outside of an enclosing ¢rap-sup

the finally-bars must still be evaluated.

173

>diant Form 25

SUPERTONIC LOOP

ubmediant Form

Figure 25.4: Submediant Loop railroad diagram.

Submediantl.o

LoopScore

—><

Subsection intentionally left to this one sentence.

o
3
a

Par

Control Jump

Figure 2§
MajorSupertonicTrap

ic Trap railroad diagrams.

»d

(— CatchScore —J
TrapScore

- (=)

MajorSupertonicLet —f

TrapScore

Bar

FinallyScore —f

pp— Clef [—

CatchScore

FinallyScore
—] >«

DR

FinallyScore

[— Bar

J ConditionType |— Clef

o {(mally)

Clef

ConditionType

BoundName

UnboundName
[— Bar j

Literal

MinorTonic

175 {

26 SUPERTONIC TRAP

ptional let-supertonic has the same purpose as in the i f-supertonic.
The let-name allows the object to be used in the trap-handlers; whereas
objects constructed in the bars cannot be used in the trap-handlers.

If the 1 nitializer trips a condition, then the immediate ¢rap-

ced is able to catch it if it has the correct trap-
quiring another enclosing level of a trap-supertonic

d to be used by the trap handlers.

even applies to trap-handlers that coincidentally handle the same condi-
tion(s) that is/are tripped inside the bars. In those trap-handlers, trying to
access that let-name tri) unatonable condition.
The type or value o ition specified must be known in present-
tense. Multiple-dispat

find the best handler.

runing rules are implicitly applied to
TOWEL is the reco ended way 10 ensure clean-up operations are
always performed, however it may over-complicate the look of the code.
For example, maybe only local state needs to be set to a known state,

which will only require a few simple tonicsgrather than a type that has to

be defined. These clean-up acti wnally-score are always evalu-
ated, whether or not a conditi

The condition object canbe p participate in the TOWEL
round-trip as if it was pulled-out AM. This is useful for nested con-
ditions that need to provide specifi uation status for diagnostic pur-
poses.

The AM tracks all conditions that can possibly be tripped while eval-

uating a func, and also those that are successfull

handler specified that will never be enco e known set of pos-
sible conditions of a func trips an unaton

Not all conditions must be trapped, nor report e tripped. This

176

26.1 Submediant Form

er by removing the necessity for all funcs to account

for conditions that they have no meaningful action to perform.

26.1 Submediarn

SubmediantTrap

(— CatchScore _j

»d

- ()

L FinallyScore

FinallyScore

Subsection intentionally left to

27 Supertonic Trip

Figure 27.1: Major Supertonic Trip railroad diagrams.

MajorSupertonicTrip
>>—(t_ri?))— Condition |-«

Condition
BoundName
Literal
MinorTonic

Any object type can be a trip condition. All evaluations ar

TOWELSs cleaned-up, until an enclosing ¢rap-supertonic, with

177

28 SUPERTONIC GIVE

is found.
A trap-handler can trip a condition. Reasons to do this would include
translating an error to a more relevant, more specific, condition to relay

better info out the intent of an error. Or the handler merely

otified, about a condition, but continue to pass it

that are tripped as conditions must be handled

yond language rules. API usage/semantic errors and regressions reported

in present-tense forces programmers to fix them as early as possible be-

fore they make it out inte

28 Supertoni

Figure 28.1: Supertonic Give railroad diagrams.
MajorSupertonicGive
o—{ give || Given | >
Given
BoundName
Literal
MinorTonic
@

The presence of a give-supertonic causes the e unc to retain
its resumability.
Resumable funcs can give multiple evaluation re the final evalu-

ation. The given type must be compatible with th evaluated type,

178

The func is always resumed after the give-supertonic last evaluated.
Bars enclosed by control-flow and control-jump supertonics inside sub-

mediant forms, are n to contain give-supertonics.

29 Supe

Figure 29. jor Supertonic Wait railroad diagrams.

MajorSupertoni
»—[;fi_t)— Promised >«

Promised
»»— MinorTonic}»<«

The presence of a wait-supert causes th osing func to retain
its resumability.
The func is always resumed at the subject of the wait-supertonic last

evaluated.

Bars enclosed by control-flow and control-j tonics inside sub-

mediant forms, are not allowed to conta

29.1 Minor Form

Figure 29.2: Minor Supertonic Wait r d diagram.

MinorSupertonicWait
bb—@— Promised >«

It is possible to wait on a tonic being evaluated to some ob

179

30 SUPERTONIC GOTO

pertonic Goto

Figure 30.1: Submediant GoTo railroad diagram.

| >

gramming techniques eschew the need for unstructured
jumps for all reasons, including cleaning-up after handling an error. Some
workarounds are still worse than unstructured jumps, such as bailing out

of nested branches. Flag e required to orderly cascade out of nested

branches if there are tured jumps, which could force the pro-

grammer to follow th a of indentation. Some would argue

that branches should 1 the first place.

A simple two-level ed branch that requires a quick exit is signifi-

cantly more messy usi ags, so the goto-supertonic is the last vestige of
unstructured jumps that can still be used for this purpose.

When jumping from a nested structure,all let-names with TOWEL in

the enclosing levels up to the le tination is destroyed. Evalu-

ation continues at the destina
Labels that are outside of th upertonic, or the enclos-
ing verbed-submediant, are not destination labels, and will trip

an unatonable condition.
If the destination label is for an osing loop, the evaluation does
NOT behave like a nezt-supertonic. Evaluation continues from before the

loop.

If the destination label is outside of a ap-supertonic, then
the finally-bars must still be evaluated.

If an evaluation jumps past a let-supertonic, t access that let-

180

atonable condition. This is one of the dangers of unstruc-
tured jumps. The other control-flows and jumps ensure that all clean-up
and let-supertonic evaluations happen properly. This avoids the problem

of having let-names tha no object altogether.

If there are 3 ion labels with the same qtom, regard-
less of nesting , ' unatonable condition. Let-names can
shadow otherle 0sing scopes because the rules for name-
search are simple amps, on the other hand, can get
very messy to follov the best of times, so allowing labels to shadow
would lead to complete spaghetti.

If there are tonics that are never evaluated due to being jumped-over

under any circumstance, that tri natonable condition.

181

IT

Generic

equirement is defined as followsﬁ

/) be a property provable about objects = of type 7.
for objects y of type S where S is a subtype of 7.

can be used to model sub-typing, but sub-typing is about purpose, not ge-
nealogy. Inheritance is its own operation that incidentally overlaps with
the purpose of sub-typi 0 wit: a sub-type relationship can exist with-
out inheritance.

Pastry is a general Doughnuts and croissants are a spe-
cific type - a sub-type - type relationship is a categoriza-
tion. There isn’t inhe ay that you or I inherit the genetic
information from our ective biological parents. In code, we may use
inheritance to represent pastry, doughnut, and croissant; but an alterna-

tive would be to infer a sub-type relationship in the present-tense. We

consider them pastries because e same core ingredients and
are baked with similar metho
Sub-typing, whether inferre both a constraint on the
relevant and provable propertie e, but also a promise to not de-
mand of a type beyond what was e itly required and provable.
Take the classic problem of Rectarngles and Squares. A Square IS-A
Rectangle where the height and width are the same; so a straightforward

representation of that relationship would be for a S ype to inherit

from a Rectangle type. The Square will ne rride behaviour to

maintain the equivalence of height and

8https://doi.org/10.1145%2F197320.197383|

182

https://doi.org/10.1145%2F197320.197383

goes that Square isn’t a proper sub-type of Rectangle
because'the behaviour of a Rectangle - that height and width can be mod-
ified separately - is not preserved by Square. Such behaviour isn’t some

temporary internal sta axternally observable behaviouﬂ

What tha S : hat the Liskov/Wing subtype require-
ment specifical able” properties. Taken in its most com-
pact formulation ion of accounting for all properties, all
observable behav i . The idea that height and width
of a Rectangle-like t e independent is not actually provable, even if
no sub-typing is involved. After-all, the simplest mathematical descrip-
tion of a Rectangle does not address mutability. The most basic guarantee

of a Rectangle-like shape is that it ur sides at right-angles, and from

that follows the area is height x the perimeter is 2 x (height +
width).

Squares sub-type of Rectangl trates why sub-typing
is distinct from inheritance. A S f both a height and
width, yet inheriting from Recta ould make them mandatory. One
can imagine an algorithm that takes a buffer of Rectangle-like objects. An
algorithm that demands inheritance from Rectangle, rather than being

an inferrable sub-type of a Rectangle, will fo

of Squares to be
a buffer of Rectangles, either doubling ace-cost by having to keep
everything a Rectangle-derived type, or a ing to convert
between Rectangles and Squares. An infere sub-typing scheme
eliminates both costs entirely.

The moral of the story is there are no single f properties that will
fulfill the Liskov/Wing sub-type requirements for all uses. A base-type has

its own set of provable properties that it expects of its derived type

rithms have their own set of properties they require pr sets

may not always be proper subsets of each other, es case of

9"The Real Problem"
https://web.archive.org/web/20230314234519/https://www.hyrumslaw.co

=

183

https://web.archive.org/web/20151128004108/http://www.objectmentor.com/resources/articles/lsp.pdf
https://web.archive.org/web/20230314234519/https://www.hyrumslaw.com/

31 LISKOV-LIKE EQUIVALENCE

inheritance. When modelling the real world, categories overlap,
which is not something that inheritance can efficiently represent, neces-

sitating a separate mechanism for specifying sub-type relationships.

» Equivalence

HAS-A relationship. Inheritance establishes
ping is a much broader relationship and de-
mands a ¢ arly broad capability to establish the relationship. TONAL
mediant forms achieves sub-typing by introducing the LIKE-A relation-

ship that enables a programmer to say more precisely what they mean

when something shou ike a” type. LIKE is an acronym for “LIskov-
liKe Equivalence”.

It may seemlikeag st to enforce that the only allowed op-
erations on an object tirely specified by the mediant,
but that would actua nder the ability to make code generic. Algo-
rithms are divided intd somewhat independent constituent algorithms,
perhaps each with their own sub-typing requirements, such as stricter

constraints that allow optimized specializations. It would be difficult if

not impossible for the higher algorithm to know all special-

izations of its constituent algo
Nevertheless, mediants are cts in their own right, so

predicate funcs can be composed priately to cover the entire space

of constituent algorithm requirem so desired.

In limited cases, requirements about stateful behaviour can be cap-

tured as present-tense programs operating on present-tense objects. A

func can indeed document when it needs a rectan object to have
independent height and width, without i rectangle subtypes
to require this property. This is limited in it cannot guaran-

tee the behaviour is preserved in future-tense, but rammer would

184

All mediants e abl run in present-tense, otherwise it trips
an unatonabl subtyping relationship is proven on a
type, or even a optimize away future encounters of the

mediant/type-or-

Mediants can view let-names outside of itself, but TOWEL round-trip
is disabled for those let-names because it would be too confusing to allow
the state of a program to change t-tense when we’re just trying
to verify a type or object’s LIKE ames introduced inside the
mediant are not restricted, since some useful sub-typing

properties that capture the trans

The name of the mediant, whether int a let-supertonic, or a
Tensah parameter subtonic, is the let-na i rent overload
candidate is accessed. Mediants commun
atonable conditions to control overload prun an application/domain
specific manner. Candidates that survive this g process are consid-

ered LIKE the what mediant describes.

Named mediants cannot be overloaded, since the ameters,

other than the implicit overload set. Names that overload a iant - of

any archetype - trip an unatonable condition.

185

33 MEDIANT TYPE

ediant Func

Figure 32.1: Mediant Func railroad diagrams.

SubmediantFunc-towel |-»<«

Subsection intentionally,left to this one sentence.

33 Mediant

Figure 3 ediant Type railroad diagram.
MediantType
»@ SubmediantFunc-towel >«
L OverloadSet —f

l

a

Subsection intentionally left t ntence.

186

Par

Hyperspace

nction Interface keyverbs

and overload-pruning rules. Ju
the underlying universe of the AM 3 andoning the rules of TONAL
space. Hypertonics are the supe

It is too easy to end up writin; ode in the AM-native

of bloat, h:

language, so to dissuade the cree pertonics are limited to

calling AM-native functions, and imply writing arbitrary amounts of
AM-native code. Hypertonics thinly wrap AM-native code - enough for the

use of normal TONAL constructs to impart TONAL semantics to the

wrapped entities. This makes it easier t S trying to recreate
TONAL-space semantics in AM-native co

TONAL does not specify the AM-native gh C99 is the
machine model the TONAL AM is based on. hosen because the ma-
chine model is simple, mostly forwards comp
and compilers are mature. The C99 features allowed in the implementa-

tion are those allowed by CompCert C compiler. This means any program

generated by a TONAL AM can be compiled by CompCert C, ev.
compilers are used for normal development. C99 c

WASM, for browser based environments.

1 They can also be used to tame lions.

187

34 HYPERTONIC FUNC

L does not use C++ because its RAII and template semantics are
not a fitting match for TONAL’s TOWEL and mediant semantics.
The lack of AM-native language specification allows compatible im-

plementation aried environments, like the Java, Javascript or .NET

11 as compute modules, like OpenCL, SPIR-V, CUDA,

etc.

34

Figure 34.1: Hypertonic Func railroad diagrams.
HypertonicFunc

— NativeName

HypertonicArg

HypertonicRet

NativeType
P>— Qtom |«

NativeName
pr— Qtom >«

ArcheType

()~
~(zom)~
@

@” is an empty string, signalling void

TONAL objects going into a native function’s a nts needs to be

188

ONAL archetype to the function’s parameter’s type.
Native objects returned from a native function needs to be converted

from the native return type to a TONAL archetype.

Archetypes are ace between native and TONAL code to

sent-tense native functions, as with the

The native fun AINE mangled-name used in native libraries

for linking. This a the need of'fiaving to include native headers or

import native modu the hypertonic syntax. This means it is techni-
cally possible to interface with C++ code by calling the mangled name of

a function. Care must be taken to understand the ownership semantics of

the C++ function’s parameters a value.

It is preferred to use C-bindi ode rather than C++ code di-
rectly, since the C-binding will pr accounted for C++ object
lifetimes. C-bindings also have tl aing able to shepherd

C++ exceptions into archetype co ible values for tripping conditions.

Figure 34.2: Hypertonic return value reference railroad diagram.
HypertonicRet
@@ret ArcheType |—

The TONAL principle is to always have fun luate to a value, with

errors and statuses reported via tripping a condition. Some native func-
tions have output parameters instead of returning a value, with the return

value being used to report error codes.

Native functions can participate in the TOWEL ro
ing its output parameter in the place where the TONAL ev

reside, instead of copying or moving a value.

189

35 HYPERTONIC INFX

igure 34.3: Hypertonic argument reference railroad diagram.

HypertonicAr
»—[@at’gﬁ— ArcheType |— NativeType |— ParameterIndex |—»<«

func’s arguments are referenced by position,
g TONAL func may have pack arguments as

ment reference exceeds the number of arguments.

Pack arguments cannot be unpacked for the hypertonic, and are not
usable for C variable argument lists. Arguments in a pack are referenced

by position just like n uments.

35 Hypertoni¢ Infx

Figure 35.1: Hypertoni
HypertonicInfx
bb—(jgggx)— NativeType

l

road diagram.

HypertonicArg ﬁ“
HypertonicArg

TONAL does not have the concept of mathematical operators: all math-

ematical operations are merely funcs. The infx-hyper avoids having

to write AM-native shim functions that use

Prefix unary operators are chosen if only one tonic argument is

provided. There is no support for postfix operators

190

HypertonicTool

ToolFlag j
>«

»»~—1 BoundName

| Literal

\—| MinorTonic

Some development processes etter left to dedicated tools. Even
though TONAL is designed to be much simpler to parse, and the TONAL

collection provides parsers, it isn’t very productive pect to program-

mers to have to fully parse a program jus mall bit of statistics.
Too much analysis can also slow build t nd therefore rapid proto-
typing, so it’s more productive to do extr side every so
often, instead of every build.

Rather than simply dumping out compile nals like incomplete
syntax trees or other data structures, the tool-hypertonic enables pro-
grammers to dump out the exact data they need in the exact format they

need. No need to dig through documentation of some obscure

Any present-tense value can be passed along to the
Common uses for external tools include: documentation/ m gen-

erators; project-specific library/interface usage and pitfall anal ; correct-

191

36 HYPERTONIC TOOL

vers; deadlock finders; callgraph summarizers; code generators

for other languages; translation cataloging; and many more.

specified by some ID, rather than by an executable’s
complicating the TONAL AM and build processes
d-line options be supplied for search paths, etc.
a project to be more flexible, such as using the same ID to
run a tool'w different analysis options, different versions of the tool,

and of course different tools. Altogether.

Using a tool ID, rat zecutable name or command line, re-

duces the need to cha causing recompiles and possibly

even cause version co

Tools are not applied in present- tool-hypertonic merely out-

puts the tool ID and the value d. The tools are applied on the tool-

hypertonic output when the p ild system runs them.

One of TONAL’s paradigms is to avoid a mish-mash of languages - ev-

erything is described by one source language - to make it easy to manage

a project with minimal mental context-switching, a
of names. The tool-hypertonic breaks thij ut it is acceptable
in this case precisely because it explicitly bridges L source with tool

usage which maintains textual traceability.

192

ic Tune railroad diagrams.

TuningFlag

BoundName

Literal

MinorTonic

Music exists on a score, but needs to be played on an instrument to be

heard. Instruments need to be tuned to the co for the music to

be played as intended. Some instrume ave alternate tunings to

allow music to be written for unconventi

Tunings do not modify the behaviour of AL program. They are

used to tweak the generated executable for t space performance.
Some tweaks can include: AM-level optimizations, such as data align-

ments; inlining, such as present-tense pruning vs future-tense switch-

ing and dummy arguments or variadic arguments; consolidati
try code; machine and platform specific generatio
AM-language, operating system versions; execution hints, s

branches.

193

39 HYPERTONIC UTF8

ypertonic Type

Figure 38.1: Hypertonic Type railroad diagram.

ativeName |»<«

Whe ring to C struct or enum types, the native name must be
preceded by struct or enum, just like in C, when not using typedefs. For
other AM-languages, the respective language rules are followed also.

C does not have the ept of member functions like in C++, so func-

hypertonics enclosed hat is defined by a type-hypertonic must

pass the @object to the explicitly. C structs do have data mem-
bers, so TONAL types nic structs can only have enclosed

objects whose let-na same as the C struct’s members,

39 Hypertonic Utf8

Figure 39.1: Hype d diagram.

HypertonicUtf8
@@utf8 Qtom >«
@
a
Writing arbitrary native code in TONAL defeats ose of TONAL-
space. For TONAL implementations, ho es requiring native
language, operating system, or machine support equire the ability

write inline native code.

194

s reserved for TONAL implementations only, and use

outside of TONAL provided libraries trips an unatonable condition.

o
3
B

19

GRAND UNIFIED TOOLKIT OF GENERALLY USEFUL THINGS

Libraries

em sramming languages does not do everything, but
can be d ith it. Languages like LISP and C++ achieve this

by bel implement libraries.

40 rtonic Present-tense Elements

Languages cannot be turtles all the way down. The Hypertonic Present-

tense Elements libra e last turtle, standing on top of the AM. The

AM can theoretically 1ented in any language, and the HYPE li-
brary does the dirty ing TONAL’s semantics onto the AM
implementation lang

Implementing as of the language as a library simplifies the com-
piler development and tenance process. The compiler then only needs
to understand the scale-degrees, then generate code, then execute the

generated code, in present-tense.

Every item in the HYPE lib e backbone of the present-

tense programming. They ar rchetypes and the conditions tripped
by the AM if there are ambigui ies, or errors, in the pro-
gram’s definition. They do not ha ed machine representation since
they are present-tense and are dis from the final executable, even

if a type is derived from them.

41 Grand Unified Toolkit of Ge

The GUT builds on top of the HYPE libra es concrete repre-

sentations of the archetypes. Most things in the G rary are usable

196

Useful Things

OOLKHI1OF GENNPHAY. L¥dilsleHbdt d Hépi@Sentation

e GUT library provides the guts of the language and
every conceivable application.
The GUT identifies common tendencies in data structures and algo-

rithms that occur in a esting program. Such structures and algo-

rithms are so ¢ and GUT should also utilize them itself.

systems together in any way imaginable. The more generalized and self-
contained the design of these tools, the greater number of combinations
is achievable, without having to icitly designed into the library.
This stands in opposition to designs. A framework is a
mostly complete thing. Itis a bla es in which programmers
plug-in their own customization activity of the frame-
work is unchanged. They are, by posable with other
frameworks, and tend to be har se components as individual mod-
ules.

Memory pool. Cache awareness. Copy-on-Write. Persistency. State

machines. Parsers. Generators. Actors. Seri aths (algebraics,

numerics).

41.1 TONALly Legible Data Repr

The experience of Javascript Object Notation s a great need to have a
succint, but readable, data representation formatwithin alanguage itself.
The experience of JSON also shows that there is a lot of value in XML’s S-

expression design.

TONALly Legible Data Representation is the nati allkinds

197

ut N SLINIEE ERp @100 REFOSENFRALLY USEFUL THINGS

vely supported even as a present-tense TONAL source when in-

cluded as such.

ies and Hypertonics Repository

ings that have side-effects, which means invoking

some ity: future-tense. The platform could be an oper-

TONAL is a cross-platform language, but platforms differ wildly. The
aim of the SEHR library is to represent any platform’s primitives faithfully
within TONAL types. platform’s semantics is faithfully exposed
to TONAL, then the p acilities of TONAL can be used to ac-
curately reflect on spe iour and produce high-quality gen-
eralized types. This in ing differences on the platform

side.

I0. Concurrency. Memory mapping. Signals. Events. Interrupts. Co-

processing. Dynamic linking.

41.3 Common Applian

Beyond data structures and algo S, there are some larger-scale or-

ganizational principles that arise ime to time. A kitchen has uten-
sils like knives, forks, spoons, pots, paris, spatula, but also appliances like
toasters, fridges, blenders, stoves, ovens, rice cookers. Likewise produc-

tivity applications have a few commonly used subs that perform

more complex, less formal, functionality.

CRUD. Scheduler. Edit history. GUI. Cli er. Settings. Work-

flow. Entity-Component. Command history. Notific

198

O hKBASE 16 BENERALQYPAE NIAdTIHINA®Ecutables

414 m of Basic Input and Output Modular Exe-

cutables

The UNIX model showcases the power of single-purpose command-line

tools that takes in at and churns output in another format.

The major > command-line tools is that they were
designed only ne in mind, so they are only usable from
shell-scripts. The is portability due to a lack of stan-
dard surrounding x of arguments and input and output formats.
The MicroBIOME'is a project to utilize the full power of TONAL li-
braries - GUT, TLDR, SEHR and CAT - to formally specify a suite of script-

ing tools as a library of code. There are high level processes common to

many programs, such as pipelin a processing, dependency man-

agement, continuous integration anagement, version control,
scripting environments, etc. Mak ble as code gives TONAL

the power of scripting, while givi of verification.

41.5 Future Extension Experimental Library

The experience of C++ shows the benefits of discipli , considered, suc-

cession plan. Good standards need go tations. Standards
don’t get implemented. No one commit plementations without a
standard. The FEEL library is the fertile gr rious experi-
ments in new types and libraries get official rt, with an eye towards
eventual standardization.

There will never be two libraries doing the e thing, but there will
be constant competition to supplant lesser-quality libraries with better

ones.

Two libraries may approach the same problem
gies. Effort should be made to analyse all approaches and

can be a unified approach and/or a common core that woul

199

42 STANDARDS

of the two approaches. The unified approach should not be much

more complex than either individual libraries.

Standard - must have backwards compatibility tests and migration tools

e conformance tests.

yild.

42 Standards

Software must ultima eroperable with the real world, whether

they be people, mach are, new and old. It is an important
goal of TONAL to ha s for internationally recognized

standards, or lacking dards, the closest things to standards coming

from various industry sortiums.

The lack of libraries that check for errors in standards application in

f dollars in accidents. Stan-

present-tense has cost hundreds of milli
dards libraries should be desi ch a way as to map to the stan-
dards themselves as directly sible. Thissfurther reduce errors by

reducing friction between the li nd the standard’s text.

All libraries should document urce of its information.

These libraries inform the gene sign of GUT libraries. For the
purposes of traceability, every generally-useful component of a standard

should be developed in the respective STD library, an identified as

being generally-useful, and migrated or desi to a GUT library.

Not wrappers over sockets or network stacks, b placement. Drivers.

Operating Systems. Packet sniffers. Diagnostics. Si

200

DARDS ts (International Bureau of Weights and Measures)

42.1 nternational Bureau of Weights and Mea-

Figure 42.1: International System of Units library layout.

Type Desc Specification Version

The symbols

the SI units,

SIL.units 2022 9th edition

SI.constants 2019 9th edition

SI.compatibility Un"fﬁaalu‘;;‘ o WIthin ST 5419 9th edition

SI.USA Units and constants for

SILUK converting to the SI syste

The BIPM brochure for the SI units contains rules about disp as text

that should be implemented.

201

s (International Bureau of Weights and MeasiZresSSTANDARDS

o
3
a

42.2 1SO standards

Figure 42.2: ISO Standards library layout.
Type Description Specification Version

ISO.quantities ISO-80000 2022

ISO.datetime 1S0-8601 2022

ISO.languages d3letter language 1o 6ag 2010
codes.

ISO.countries Country codes and 1SO-3166 2020

ISO.currencies Alphabetic aj 1SO-4217 2015

A and B Series o ISO-216 2007
‘ SO-217 2013

IS0.paper C Series - env
Withdrawn, b 0 1985
for remaini
I1SO-838 1974
. Only character set supported
ISO.Unicode by TONAL. 1SO-10646 2020
ISO.Z Formal verification support. 2007
ISAN. Audiovisual Nu 2008
ISBN. Book Numb ISO-2108 2017
ISIL. Identifier for Libr
Libraries, archives, 2019
ISO.IS?? museums.
ISMN. Music Number. 2021

Printed music.
ISNI. Name Identifier.
Contributors to media.
ISRC. Recording Code. Sound
and music video recordings.
ISSN. Serial Number. For
serial publications.
ISTC. Text Code. Text-based.
Withdrawn, but implement
for remaining usage.
ISWC. Musical Work Code.
For collections.

QR codes. ISO-18004
Micro QR cé83s. 1S0-23941

-27729 2013

ISO-3901 2019

ISO-3297

ISO-15707

ISO.QR

tandards 42 STANDARDS

cma standards

Figure 42.3: Ecma Standards library layout.
Type Description Specification Version

ol character sequences
T-100, VT-220, VT-420 ECMA-48 5th edition
inals and emulators.

Parsing only. ECMA-404 2nd edition

ECMA-262 13th edition

Readand generate CD - peyp 68 ond edition
Ecma.CD images.

Universal Disk Format. ECMA-167 3rd edition

42.4 1EEE stand

rds library layout
Type Specification Version
ry16 to binary256.
decimal 32 to
IEEE.float decimal128. IEEE-754 2019
Recommended functions.
Textual conversions.
IEEE.interval IEEE-1788 2015
IEEE.Ethernet IEEE-802.3 2022
IEEEWiFi IEEE-802.11 2022
IEEE.JTAG IEEE-1149.1 2013
IEEEVHDL IEEE-1076 2019
IEEE.SystemVerilog %%ﬂ‘\fz?te hardware from “yppp 1500 2017
P@rapergefpeeification
IEEE.PSL bindingkdogmagevare, or 2010
eflantdtizre. verificati
IEEE.POSIX Issue 7. -1003.1 2017
IEEE.RTOS uT-Kernel. 2018

204

42.5 IETF

(brary may range from simple interface bridging, to API

pility layer for emulation or testing purposes.

42.5 IETF

42.5.1 Internet standards

Type Description cation Version

UTF-8 is the only cha
IETE.STD.UTF-8 encoding used in TO
UTF-8 everywhere.

IETE.STD.PPP
IETE.STD.IP A reasonable modern 4
6

network stack for

IETESTD.UDP implementing services, STD-6

[ETESTDTCP streams, and. clients, at all STD-7
levels of the internet.

IETE.STD.RTP

IETE.STD.DNS

IETE.STD.HTTP

IETE.STD.POP

205

42.5 IETF

Figure 42.6: IETF Proposed Standards library layout.
Description

Specification = Version

RFC-192[8-9] 5

IETERFC.SOC REC-1961
RFC-204[5-7,9]

IETE.RFC.MIME REC-4289
RFC-2131 4

IETERFC.DHCP REC-8415 6

IETE.RFC.SLP ervice Location RFC-2608 2

Protocol.
IETERFC.IGMP IP multicast groups. RFC-3376 3
IETE.RFC.Kerberos Secure authentication. RFC-4120 5

IETERFC.UUID - RFC-4122
unique for
IETERFC.SSH EC-425[0-4]
Border Gate Protocol
IETERFC.BGP for CI 2SS RFC-4271 4
Routing

IETE.RFC.LDAP Organizational directory pre 4590

services.

Base 16, 32, and 64
IETE.RFC.Base64 encoding. -4648
Prefer URL sa

IETEREC.PGP OpenPGP Messa

Format.

Document editing ove

IETERFC.WebDAV HTTP.
IETERFC.SMTP Mail messaging. -5321
IETE.RFC.message Internet Message RFC-5322

Format.
TETF.RFC.XMPP Open real-time

messaging.

IETERFC.RPC Basis for NFS.
IETE.RFC.NFS Transparently accessfile ppc 75677 3

servers.
IETERFC.TLS Encrypted connections. = RFC-8446
IETEREC.IMAP Mail management. RFC-9051
IETERFC.NTP Accurate time keeping. RFC-9109 4

Future compatibility RFC-9113

IETERFCHTTP (ith the www RFC-9114 3

Stream Control
IETE.RFC.SCTP Transmission Protocol. RFC-9260

commendations 42 STANDARDS

nformational

7: IETF Informational RFCs library layout.
Description Specification Version

ompressed file format. RFC-1950 3.3

Common compression

RFC-1951 1.3
scheme.

compressed file

RFC-1952 4.3
format.

Common image

IETERFC.PNG . RFC-2083
compression.
IETERFC.UTE-16 Less common unicode pre 9789
encoding.
IETEREC.CSV d dirty tabular ppc 4949
Informational RFCs, ats and data encodings, imple-

mented to consume fil those formats and encodings. For producing,

TONAL will settle on newer, more standard, more performant formats

and encodings.

42.6 ITUrecommendati

Figure 42.8: ITU Recommendations library layout.

Type Description Specification Version
ITU.UTC Definition of standard time. 2002
Specify binary format 2021
ITU.ASN-1 layouts. 2021
ITU.UHDTV 8K and 4K TV standard. 2015

208

42.7 NIST standards

tandards library layout.

Type Specification Version
nd units for
NIST.constants ies, with CODATA-2018 2021
NIST.AES Ong symmetric FIPS-197
encryption.

NIST.DSS Digital signatures. FIPS-186 5
NIST.HMAC Hash authentication. FIPS-198 1

FIPS-202
NIST.SHA SHA-224 to FIPS-180 4

FIPS-180 4

42.8 OASIS standards

Figure 42.10: OASIS Stand

Type Version
OASIS.RELAX-NG Schema langu
OASIS.OpenDocument Office productlmty
interchan

OASIS.DocBook Technical manual authoring. 5.1
OASIS.AMQP Enterprise messaging. 1.0
OASIS.MQTT Embedded device messaging.

Cryptographic Message
OASIS.PKCS Cryptographic hardwar
OASIS.SAML Single Sign On.

209

ecommendations 42 STANDARDS

W3C recommendations

Figure 4 W3C Recommendations library layout.

Description Specification Version

rchical document

nd interchange. 1.0 5th edition
Namespaces 1.0 2nd edition
XInclude 1.0 2nd edition
Information Set 2nd edition
id
Base 2nd edition
31
3.1
31
W3C.XQuery 31
31
3.1
Serialization 3.1
XQuery and XPath Full Text 3.0
XQuery Update Facility 1.0
W3CWASM 2.0 2023-01-18
2.0 2022-04-19
2.0 2022-04-19
Snapshot.
W3C.RDF 11
W3CWOFF 2.0
W3C.CSS Decoupled visu ing. 3
W3C.SVG 2
W3CWebCGM Technical vector graphics. 2.1
W3C.SCXML State machine language. 1
Mathematical formula
W3C.MathML representation an 2nd edition
formatting.
W3C.EPUB Electronic books.

210

42.10 WHATWG Living Standards

NG Living Standards

G Standards library layout.

Type Description
WHATWG Web Programmatlc description of
interfaces.
WHATWG.URL Web address.
WHATWG.DOM Document model.
WHATWG.HTML Document sema}ntlcs and
presentation.
WHATWG WebSockets Efficient persistent web

connections.

42.11 Industry consortiu

42.11.1 Khronos

Figure 42.13: Khronos Stan

Type Version
Khronos.SPIR-V Shader languag
Khronos.OpenCL

Low level 3D gra .
KhronosVulkan SC. For high reliability vehicles.
Khronos.WebGL OpenGL profile for web. 2.0
Khronos.EGL OpenGL and native integration.
Khronos.COLLADA 3D modelling assets.
Khronos.gITF 3D asset transfer.
Khronos.KTX Texture container for distribution.

211

stry consortiums 42 STANDARDS

Bluetooth

242.14: Bluetooth Standards library layout.

Description Version

Short-range wireless peripheral

o 5.3
communications.

Type Version
HDMI 2.1
42.11.4 USB
Type Version

4
USB 3.2

2.0
42.11.5]JEITA

Figure 42.17: JEITA Standar

Type Descripti Version
JEITA.Exif Camera media format. 2.32

212

42.11 Industry consortiums

Specification Version

Xiph.Ogg ontainer format. RFC-3533 0

XiphVorbis I
Xiph.Opus pplanting Vorbis. RFC-6716
Xiph.FLAC Audio lossless compression. 1.4.2

42.11.7 Matroska

Figure 42.19: M ka library layout.

Type Descr Specification Version
Matroska.EBML Binary XML. RFC-8794

Audio/Video container 1.63
Matroska.MKV format. WebM

42.11.8 AOMedia

Figure 42.20: AOMedia Standards library layout.
Type Description

High performance vide
compression.

AOMedia.AVIF Image format based on AV1.

AOMedia.AV1

213

42 STANDARDS

endors

42.12.1 Linux

re 42.21: Linux library layout.

Description Version
Executables.
ebugging information. 5

Asynchronous IO.

Event notification.

42.12.2 BSD

SD library layout.
Type Description
BSD.kqueue Event notification.

42.12.3 Microsoft

Figure 42.23: 1brary layout.

Type Specification Version
Microsoft.IOCP
Microsoft.fiber
Microsoft.OpenType Common fo . 1.9
Microsoft. BMP Common lossless
raster format.
Microsoft.PE Executables. 2022-24-06
Microsoft. OOXML Re&ad MS Office 5th edition
ocuments.
Microsoft.XPS Rtaad printable 1st edition
ocuments.

214

42.12 Vendors

Figure 42.24: MacOS library layout.

Type Description

MacOS.Mach- Executables.

Lightweight concurrency.

Figure 42.25: OpenMP library layout.
Type Description Version

OpenMP Parallel tations 5.2

42.12.6 Adobe

Type Specification Version
. printing
Adobe.Postscript language. 3
'/A’ -/E) -/R’ -/X7 -/UA’ -/VCR’
VT 2.0

Adobe.PDF Archiving, engin ’

raster, printing, acce

ECMAScript for P
Adobe XFDF XML Forms Data For 3.0
Adobe XMP eXtensible Metadata 1SO-16684 2021
Platform

42.12.7 ILM

Figure 42.27: ILM library layout.
Type Description ersion
ILM.OpenEXR Deep raster images.

215

42 STANDARDS

Figure 42.28: QOI library layout.
Description Version

rformant lossless image

. 1.0
compression.

Figure 42.29: 7z library layout.

Type Description
7z Archive format.
7z.LZMA Archive compression algorithm.

42.12.10 BitTorrent

Figure 42.30: BitTorrent library layout.

Type Description Specification
BitTorrent Peer-to-peer g protocol. BEP-3
BitTorrent.DHT i ed Hash Table. BEP-5
BitTorrent.tracker BEP-15
BitTorrent.uTP BEP-29

42.12.11 SQLite

Type

Version

In-memory database and

SQLite interchange.

216

42.12 Vendors

Figure 42.32: Princeton library layout.
Description Version

Type
Princeton.Wo ctionary with API. 3.0

217

ndex

abstract machine, identicality,
identity,
Include access,
instance,
interface,
interfaces,

let,

co-enclosed,
let-name,

composition,

managing complexity,
member,
multi-paradigm,

derived,
deriving object,

divide-and-conquer,

dominant, bject, [58H60]
object oriented,
enclosed, sl
Objects,
encloser,

objects,
encloses,

equivalence,
equivalent,

functional,

future,
future-tense,

generic Tensah, 59|
Generic-Brick-Construction-Toy,[59]
grab, [60] ar ering,

Grab access, [60]
identical,

218

INDEX

tense,

type,

undifferentiated compile-time generic

value, 6C
variable,
Virtual access,

Write access,

219

	I Introduction
	1 Motivation
	2 Influence
	3 Scope
	4 TONAL Pentadynamics

	II Syntax
	5 Archetypes
	6 Literals
	6.1 Labels and Comments

	7 Tonics
	8 Scores - Keys, Bars, and Clef
	9 Major/Minor Distinction
	10 Supertonics and Subtonics
	10.1 Keyverbs

	III Objects
	11 Taxonomies
	12 Conditioning
	12.1 Atonal states

	13 @jectives
	14 TONAL hooks
	14.1 Conversion
	14.2 Redirection

	15 TOWEL
	15.1 Func local
	15.2 Transfer
	15.3 Round-trip
	15.4 TOWEL hooks
	15.4.1 Construction
	15.4.2 Copy Construction
	15.4.3 Relaying
	15.4.4 Destruction

	16 Let-Name Lookup and Pruning

	IV Structure
	16.1 Submediant Forms
	17 Supertonic Func
	17.1 Major Supertonic Push-In
	17.2 Major Supertonic Pull-In
	17.3 Major Supertonic Push-Out
	17.4 Supertonic Include
	17.5 Minor Form
	17.6 Submediant Form

	18 Supertonic Type
	18.0.1 Hooks
	18.0.2 Access control

	18.1 Supertonic Readers
	18.2 Supertonic Writers
	18.3 Supertonic Virtual
	18.4 Supertonic Push-Out
	18.5 Supertonic Include
	18.6 Minor Form
	18.7 Submediant Form

	19 Supertonic Let
	19.1 Minor Supertonic Include
	19.2 Mediant Push-In
	19.3 Submediant Form

	20 Minor Supertonic “()” (the list specifier)
	21 Supertonic Grab
	21.1 Mediant Let

	V Control Flow
	22 Tonic
	22.1 Minor Supertonic Push-In
	22.2 Minor Supertonic Pull-Out

	23 Supertonic Eval
	24 Supertonic If/Iff
	24.1 Submediant Form

	25 Supertonic Loop
	25.1 Supertonic Stop
	25.2 Supertonic Next
	25.3 Submediant Form

	VI Control Jump
	26 Supertonic Trap
	26.1 Submediant Form

	27 Supertonic Trip
	28 Supertonic Give
	29 Supertonic Wait
	29.1 Minor Form

	30 Supertonic Goto

	VII Generic
	31 LIskov-liKe Equivalence
	32 Mediant Func
	33 Mediant Type

	VIII Hyperspace
	34 Hypertonic Func
	35 Hypertonic Infx
	36 Hypertonic Tool
	37 Hypertonic Tune
	38 Hypertonic Type
	39 Hypertonic Utf8

	IX Libraries
	40 HYpertonic Present-tense Elements
	41 Grand Unified Toolkit of Generally Useful Things
	41.1 TONALly Legible Data Representation
	41.2 System Entities and Hypertonics Repository
	41.3 Common Appliance Toolkit
	41.4 Microcosm of Basic Input and Output Modular Executables
	41.5 Future Extension Experimental Library

	42 Standards
	42.1 SI units (International Bureau of Weights and Measures)
	42.2 ISO standards
	42.3 Ecma standards
	42.4 IEEE standards
	42.5 IETF
	42.5.1 Internet standards
	42.5.2 Proposed standards
	42.5.3 Informational

	42.6 ITU recommendations
	42.7 NIST standards
	42.8 OASIS standards
	42.9 W3C recommendations
	42.10 WHATWG Living Standards
	42.11 Industry consortiums
	42.11.1 Khronos
	42.11.2 Bluetooth
	42.11.3 HDMI
	42.11.4 USB
	42.11.5 JEITA
	42.11.6 Xiph.Org
	42.11.7 Matroska
	42.11.8 AOMedia

	42.12 Vendors
	42.12.1 Linux
	42.12.2 BSD
	42.12.3 Microsoft
	42.12.4 MacOS
	42.12.5 OpenMP
	42.12.6 Adobe
	42.12.7 ILM
	42.12.8 QOI
	42.12.9 7z
	42.12.10 BitTorrent
	42.12.11 SQLite
	42.12.12 Princeton

