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Part I

Introduction
Linguistics, botanics, physics, musics. Science is what is left once we take

into account all the ways one can be wrong.

1 Motivation

The TONAL programming language tries to answer the question - what if

a language aims from the start to have compile-time programming and
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generic programming as its primary focus?

Why focus on compile-time and generic programming?

Performance is important now, more than ever, as software exceeds

the capability of hardware. Programmers of the past wrote amazing pro-

grams on, and for, machines that are less powerful than today’s phones,

but they did so taking a lot of unsafe and unportable and unexplainable

shortcuts. Many modern languages trade performance for portable safety

and end up showing that it is impossible to put that toothpaste back into

the tube. As soon as a language gains a slow feature, it gets used, de-

pended on, and thus becomes impossible to rollback.

Primarily focusing on compile-time and generic programming is to

force the design of the language to properly solve the issue of high-level

programming, as it relates to performance, rather than just kicking the

can down the street. Languages that add compile-time and generic pro-

gramming as an afterthought (or for backwards compatibility reasons)

get the worst of all worlds. To that end, TONAL aims to make compile-time

and generic programming so primary, that it is indistinguishable from

normal programming.

Otherwise, if compile-time and generic programming is too hard to

use, programmers will find performance is too hard to consider as de-

fault. Compile-time and generic programming is required for performance

because it is simply faster to do whatever is known at compile-time than

waiting to run the final program.

Good performance is good usability. Good usability for compile-time

and generic programming is good performance. TONAL takes after C++ in

its focus on reducing unnecessary overhead from the machine, but with-

out the constraints of C preventing a simpler syntax.

On the topic of usability, TONAL is not motivated by pet peeves. Very

often, a new language has to reinvent bits of syntax - new ways of writ-

ing loops, or printing a string, seemingly because the language designers

13
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dislike minor things about the languages they’ve used. They’re usually

ad-hoc and special compiler only constructs that can’t be customized. On

the other side of the spectrum, like LISP, every high level feature is created

by macros on top of compiler features, giving a programmer any option.

Languages like C++ introduce features like range-for loops and structured

bindings with hooks that allow the programmer to work their own types

into the language.

TONAL takes after LISP in only having a small number of primitive

forms, but takes after C++ in that the primitive forms are complete enough

- and customizable enough - to cover most code structures without re-

quiring macros. To achieve a look that doesn’t feel ad-hoc, the syntax is

focused such that the advanced constructs - like compile-time and generic

programming - are not distinguishable from the simple constructs. That

means forgoing the use of most special characters commonly used in pro-

gramming languages, because experience in C++ shows that having a lot

of special characters makes it harder to write generic code that fits to-

gether syntactically. The focus on compile-time programming means macros

are not needed, because generic function calls are not expensive at compile-

time.

In the early experimentation of TONAL, from the syntax reduction

emerged the classification of syntactical elements into the scale degrees

of music, particle physics and basic grammar. Anyone who has had trou-

ble remembering the differences between declarations, definitions, state-

ments, expressions; parameters, arguments; would appreciate the diffi-

culty of trying to talk about code, let alone teach it. While teachability

wasn’t an initial goal of TONAL, the effort to make performance, compile-

time and generic programming ergonomic, reducing syntax and special

characters, made it possible to pair syntax elements with corresponding

systematic names.

TONAL is suited to novices and experts alike. Rather than forced sim-

14



2 INFLUENCE

plicity of some languages aimed at novices, that then requires experts to

work around limitations, it makes advanced language constructs of other

languages into regular constructs. TONAL aims to make novices into ex-

perts by providing a gentler ramp to advanced concepts. Novices do not

remain novices for long, but anaemic language constructs stay around

forever, so there’s no point in reducing the power of a language.

A unified syntax for novices and experts means that rewriting of code

is reduced. There isn’t a massive syntactical change from concrete, tweaked

code to abstract code to take advantage of performance or compile-time

or generic programming. As novices become experts, their old code doesn’t

need to be discarded, but similarly as experts become experts in more lan-

guage features old and new, their effort isn’t wasted. Novice code should

look like expert code should look like new paradigm code.

This lends itself well to backwards compatibility, which is required

for any serious language. People are happy to break other people’s code,

but not happy when their own code breaks. No language can maintain a

critical mass of users if they leave due to regular breakage, so a language

must not break anyone’s code for a longer amount of time than the coding

style is used.

2 Influence

It must be said up front that TONAL is influenced most by C++. Syntax

doesn’t matter, but the mindset. The language is shaped by experience.

C++ is not the best language, but it gets the job done, and the jobs run

faster. It doesn’t break your code just because a lot of vocal people hate

the features you depend on. It doesn’t add new features because they’re

popular at the time; mostly features with a demonstrable benefit gets

added - as libraries if possible. It doesn’t mandate features that are not

supported by hardware, such as garbage collection, various co-processing

15



2 INFLUENCE

units, even tiered memory architectures.

C++ also represents decades of learning. Any fool can create a new lan-

guage (eg, TONAL), but there is a treasure trove of knowledge gained from

practical, industrial experience that would be foolish to ignore. Plenty of

languages and their designers think that merely having a new language

with slightly different syntaxes for printing, or for-loops, or declaring

variables, will somehow avoid all the problems that plague any program-

ming language. C++ is a living document that is a testament to all its suc-

cesses, failures, inventions, imports, compromises and dead ends, and in

that TONAL should regard itself as inheriting all those lessons.

TONAL should also learn from C++ its collaborative, disciplined ap-

proach to features being added, deprecated, removed, modified or re-

specified. Despite the accusations of design by committee, the C++ com-

mittees, composed of various Working Groups that are charged with look-

ing into broad areas of focus, only consider proposals coming from the

community, they do not design proposals. There may be many compet-

ing proposals, but ultimately the one that is selected is one that plays well

with the rest of the language.

C++ is an international standard, written in English, with multiple in-

dependent implementations, with no reference implementation owned

by a single entity. TONAL aims to be vendor neutral, but taking lessons

from the C++ standardization experience, TONAL should ultimately be de-

fined by a comprehensive, open, collaborative test-suite that tests for con-

formance as well as non-conformance. English standards are imprecise

compared to test-suites and are often bogged down with incomprehen-

sible descriptions. The test-suite would need to be delicately curated to

avoid standardizing quirks of an implementation. Certain implementors

may think they can monopolize the language by standardizing their im-

plementation, but that actually works against them as they would be stan-

dardizing a quirk of their implementation that they will then be forced to
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support in the duty of backwards compatibility.

One of the major influences of C++, and inherited by TONAL, are the

principles espoused by Elements of Programming by Alexander Stepanov

and Paul McJones, and From Mathematics To Generic Programming by

Alexander Stepanov and Daniel Rose. Every language claims to be de-

rived from fundamental unifying principles. Unfortunately programs have

to model the real world and the real world is not easily reduced, espe-

cially not into abstract ideas. Such languages eventually break from their

clean derivations and introduce widely used concepts in an ad-hoc way.

Even if a language is completely consistent to its core, it still remains the

challenge of programmers to build their programs from the core princi-

ples of the problem domain. This may or may not be compatible with the

language’s core principles; for example, not everything fits into one strict

type hierarchy. Instead, programmers often/should do what mathemati-

cians do - start with concrete, specialized prototypes/examples and then

refactor (by naming, splitting up, extracting) and generalize into a solu-

tion composed of parts that fit well together, but can be useful for other

problems and problem domains.

Instead of forcing programmers to adhere to some object model and

hierarchy, or worse yet, a framework, TONAL takes the lessons of abstract

algebra to help programmers do what they already do. Abstract algebra

is about what notation means and how it behaves under its own rules;

programmers, of any language, are really just creating specific notation.

Whether that notation is implemented as objects, functions, design pat-

terns, idiomatic code - without special syntax - ideas from abstract algebra

gives a way to uniformly encode common rules about how that notation

behaves. The programmer is free to decide how to implement their nota-

tion because TONAL does not enforce any particular implementation as

the one paradigm to rule them all and be confident that the rest of the

language, and indeed 3rd party libraries, can easily interoperate through
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the ideas of abstract algebra.

Programming languages are trending towards more functional styles,

because they have demonstrated, tangible benefits. Many logic bugs do

arise from unexpected side-effects, and functional languages on the whole

do not modify values, but create new values from given arguments. In the

same vein, TONAL follows suit with the default immutability of functions.

Functional languages also treat all functions as first class, in contrast to

languages like C++ where free functions are not the same as capturing

lambdas (implicit function objects) or full-fledged function objects. It cre-

ates a friction to writing generic code that needs to treat all function-like

things the same. TONAL follows the functional style by not differentiating

between free functions and (sometimes stateful) function objects. That is

the minimal language support needed (or rather, it gets out of the way),

and from there, functional composition can be implemented in libraries

with no cost.

Functional programming leads very well into declarative style pro-

gramming languages. LISP and XML use S-expressions. S-expressions

merely express the structure of a program, and the program processors

are then free to traverse that structure and interpret the meaning and ap-

ply transformations eg, code generation, macro expansion, optimizations.

C++ in fact can also use S-expressions, a technique called expression tem-

plates, in order to encode computations for lazy evaluation. That allows

for whole expression factorizations like that in maths which then leads

to optimization opportunities that may even take into account hardware

capabilities.

Declarative style is all about intent, which is more about what code

means to us than what it means to the machine. Intention matters the

most in the frontend of the language which is where the high level con-

structs impose conceptual structure - structure that doesn’t actually exist

in the bits and bytes of computer architecture. Intent allows a program-
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ming language to understand what a program is supposed to mean, and

not just a series of instructions to blindly follow. High level constructs that

reflect intent can be eliminated from the eventual program due to guar-

antees about program behaviour that cannot be inferred from low level

code. For example, resumable functions - sometimes called coroutines

in other languages - can be optimized away, in contrast to manual jumps

and state-machine management (often achieved with messy macros) to

emulate a resumable function that the language has no idea about.

In recent years, language design has placed a lot more emphasis on de-

faults. When it comes to intention, the non-specification of an intention

says just as much as specifying an intention. C++ is mutable by default,

unless specially marked; Rust is immutable by default unless specially

marked. Both have their reasons - C++ maintains semantic backward

compatibility with C, whereas Rust recognizes that it is often safer to make

things immutable and so doesn’t make the programmer go out of their

way to specify the common option. Defaults represent the common inten-

tion. Like C++ but without the C backwards compatibility (or in fact C++

backwards compatibility), defaults are chosen that can be implemented

with zero overhead, or can be eliminated when given compile-time infor-

mation. As it so happens, this also means the defaults are those which

are safe, because zero overhead can only be achieved with compile-time

information; an understanding - by the compiler - of the high level guar-

antees of a feature.

Query languages are prime examples of languages all about intent

- what we want to find, but not how we find. XQuery FLWOR expres-

sions are something that influences TONAL as a design goal. The lan-

guage should be powerful enough to build up to things like FLWOR, LINQ.

SNOBOL4 pattern matching is the other major declarative influence on

TONAL. Regular expressions are not powerful enough - hampered by heavy

use of symbol characters, and there are too many different flavours of
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BNF, while SNOBOL4 has only one de-facto standard. Both XQuery FLWOR

and SNOBOL4 pattern matching have the benefit of being embedded in

an actual programming language, so we know that there isn’t much of a

barrier to implementing it as part of a programming language instead of

relying on external processors to generate code.

Perhaps the most surprising influence on TONAL is the graphical for-

mal specification language DRAKON. Ergonomics is an important aspect

of DRAKON that is not formalized in other graphical languages. C++ has

an uncontested reputation for having difficult syntax. LISP syntax is, on

the surface, very simple, but heavy reliance on macros, many different

ways to declare variables, and a proliferation of mini-languages. And of

course, graphical languages like traditional flowcharts, SDL, UML, and

most others, have been unwieldy in never really being able to capture

the fluid nature of software development without being inundated with

large criss-crossing diagrams with many graphical primitives. DRAKON

has relatively few primitives and a small set of powerful layout rules that

make it easy to create readable diagrams. In a similar way, TONAL avoids

the extremes of LISP and C++ and chooses primitives that covers every

aspect of successful languages with minimal syntax.

Ergonomics is also a concern when allowing for third party tooling.

The simpler a language is to parse, especially without the text transfor-

mations hidden by macros, the easier it is for anyone to whip up a quick

tool to get whatever information they need from source. It would also

make it easier for implementations to ship tools when there is a common,

non-technical, vocabulary that captures all aspects of the language.

3 Scope

An important question for all implementations of programming languages

is: what should be left out?
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Can we afford to leave it out? Can we find a way of bringing it back in

later?

What can’t we bring back later? What can’t we afford to leave out?

As was discussed in Motivation on page 12, performance is something

that is hard, if not impossible, to get back once it is lost. Backwards com-

patibility requirements means that languages cannot change slow fea-

tures that are widely used, and even if they eventually get changed, exist-

ing systems can’t always simply be recompiled and redeployed without

extensive testing. We can’t bring performance back later.

Influenced by C and C++, a was discussed in Influence on page 15,

TONAL must take into account, and take advantage of, the reality of phys-

ical machines. Machines have size limits, and size limits affects perfor-

mance, whether it is data size, or code size. The smallest size is zero. Any

code that can be executed at compile-time only can be discarded. Any

temporary data that can be computed at compile-time can be discarded.

Information that is lost to the run-time cannot be recovered, such as the

exact type and therefore exact sizes, mustn’t be left to run-time dispatch

just for the sake of polymorphism. We can’t afford to leave out any generic

programming.

Data that we can’t discard must only use the data size that is necessary,

which may not always be the smallest if there are performance gains to be

had for alignment correctness. Therefore, as a base for the rest of the lan-

guage, we must have a rich library of machine types. There are many dif-

ferent types of machines, now and into the future, but if we have compile-

time programming, we can cater to these differences with normal pro-

gramming. We can’t afford to leave out compile-time programming with

machine types.

Machines have memory, but they don’t collect memory that is left as

garbage that programs generate. They don’t even have the concept of

garbage memory. Any notion of used and unused memory is something
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that is tracked by a language for correctness. The only way a language can

keep track of when memory can be reclaimed is for the programmer to tell

it. We can’t afford to leave out ways for a language to automatically track

memory at compile-time; a way for a programmer to tell the language

without having to do so manually. We can afford to bring back later a

separate library that keeps track of memory at run-time. By necessity it

must be built upon automatically tracked memory - there is no way to

make the converse cheaper.

All machines have support for basic control flow for jumping; condi-

tional and not. Experience shows us, however, structured forms of jump-

ing, like loops, branches, and named jumps, local and non-local, gives a

language more information about the intent of a program, and so more

opportunities to run things at compile-time. So we can’t afford to leave

out the basic traditional structured control flow, but we also can’t afford

to leave out other control flows that, while requiring a lot of code genera-

tion in most instances, can be eliminated if executed only at compile-time.

More expensive machines have hardware threads, multiple cores, sep-

arate processing units, or working in a cluster. They are not always avail-

able and involve unpredictable flows, so there aren’t many, if at all, mean-

ingful structures we can reason about at compile-time. These are things

that can be added back later as run-time libraries, but the language itself

can at least define a consistent way to use these platform specific features.

This is where compile-time programming facilities help because platform

features can be enabled, selected, or removed at compile-time without

special syntax.

Any high level features that can be implemented with the language - ie,

in language libraries - in a fashion that allows use at compile-time should

be implemented. In a way, we can’t afford to leave them out, as they can

build on each other at no cost and so a lot of advanced features come for

free. If they were to be left to be implemented as an afterthought, we
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would again face the issue of trying to claw back performance in ways

that break backwards compatibility. It is better to have these features at

compile-time, even if their run-time performance is slightly slower, be-

cause compile-time means no run-time cost, and tuning for run-time will

always be required anyway.

The features that require operating system support can be added back

later as run-time libraries as they cannot be purely implemented with the

language but require special compiler support.

While influenced by LISP and functional styles, as was discussed in

Influence on page 15, nevertheless TONAL does not share the same ob-

session with any single concept - macros, purity, call-with-cc, monads.

TONAL hedges its bets on compile-time and generic programming and a

syntax that is unified for both that has all the necessary power to achieve

what all those features are capable of. For example, macros are used to

re-order source code without having to evaluate it at the point where the

macro is invoked, in order to allow the creation of domain-specific lan-

guages. With compile-time and generic programming, something akin to

new syntax can be created with compile-time values at no cost to run-time

performance. We can afford to leave out macros, and we can afford not

bringing them back later.

Obsession with purity of any form is the cause of many of the world’s

greatest atrocities, so TONAL does not partake in that obsession either.

Modifications of things in-place is a fact of life. While reducing side-effects

has real benefits in reducing errors and even improve performance, the

hoops to achieve statefulness continues to be a major turn-off for func-

tional styles of programming. Programmers see all the effort to use state-

fulness in a functional style and see imperative style languages need no

effort to do the same; to do the thing that programs, by definition, need to

do the most often.

We cannot afford to leave out statefulness, but at the same also can-
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not afford to leave out functional styles. Most code should be written in

a functional style - immutability by majority (not default), and composi-

tion of functions to make higher-order functions. Stateful programs have

a whole host of other issues, such as aliasing, concurrent modification,

ownership transfer. TONAL solves them with explicit marking of mutabil-

ity changes, which is enabled by compile-time programming. Mutability

is fundamental to a language, so is something that must be implemented

at the compiler level, while functional composition is better served with

compile-time generic libraries, as the TONAL language itself is designed

to enable such flexibility.

The experience of C and C++ compared to other languages shows that a

proper module system needs to be designed from the beginning. Compile-

time and generic programming introduces complications for modules since

a lot of information needs to be known across a whole program to take ad-

vantage of the flexibility and performance. The separation between mod-

ules needs a way to share information between them without the high

coupling of textual substitution. One such solution would be to generate

intermediate files and caches. On top of that, traditional build systems

operate on text files with no knowledge the semantics of the files and

special support is required for any language specific intermediate files.

At the very least, we can’t afford to leave out modules, because they set

the limitations of the language via the requirements of implementation.

Build system support we can bring back later, as it would depend on how

modules could be implemented.
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4 TONAL Pentadynamics

Figure 4.1: The Pentadynamics of TONAL, and their interactions.
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1Software engineering can be described as managing complexity by divide-

and-conquer. Many techniques, syntaxes, and philosophies have been in-

vented to solve the divide-and-conquer problem. Many claim to provide

the ultimate paradigm to the divide-and-conquer problem.

Languages traditionally classify capabilities as belonging to a paradigm,

like “object oriented”, or “functional”, or “procedural”, or indeed “multi-

paradigm”. The Pentadynamics do not constitute a paradigm, but rather

highlights the main organizational forces pulling on programmers when

1This section uses metaphors and real-world analogies in order to get readers to think

about how each dynamic is materialized, rather than how they’ve been traditionally im-

plemented in compilers or interpreters. This section is about the dynamics and should be

applicable to experts and novices alike, so it should avoid getting too deep into those imple-

mentation details. It also prevents the language being tied down to any single interpretion

of the dynamics, and leave room for them to be implemented in many ways, and of course

be interpreted to include different features or different usages of features.

25



4 TONAL PENTADYNAMICS

dividing and conquering. The Pentadynamics also interact with each other

as divide-and-conquer strategies sometimes complement each other, and

other times at-odds.

User requirements and the problem space pulls on the design of a so-

lution in multiple directions. Therefore divide-and-conquer strategies do

not belong to any single Pentadynamic, with each Pentadynamic naming

a general direction that a design is pulled towards, rather than strictly

defining a category with hard boundaries. These are highly overlapping

magisteria.

Language features are usually invented ad-hoc to solve a real, but lim-

ited, coding scenario, and thus are permeated with all of the Pentadynam-

ics to varying degrees. This is opposed to trying to invent features based

on theoretical concerns; they fit neatly within categories but are useless

in real code. Real code can be categorized multiple ways at the same time,

and can even change nature of its categorization according to its interac-

tions with, say, development practices.

Compose - music and biology are endlessly complex constructions. Lim-

ited rules operating on self-contained units can build up symphonies and

ecosystems. The most uncoupled systems are compositions of non-overlapping,

non-communicating processes, each doing their own thing in their own

time, but are useless. Achieving objectives always requires some kind of

coordination between parts. On its own, it is equally used in abstract, and

concrete ways; much like music is based on abstract theory, and biology

deals with the tangible.

General - water has many different uses, but comparatively few ways

to contain it, or transport it. Water vessels either have a bowl or a hole,

and made of non-porous materials; the designs of which are also appli-

cable to other fluids because it is possible to generalize on common at-

tributes. Rivers become pipes; lakes become bowls. Generalization blurs

the sharp realism into smooth abstract forms; their surfaces can join to-
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gether without too much interlocking and becoming stuck.

Special - a lump of rock can be chipped and carved, clay can be moulded;

specific tools forged for specific tasks. Material concrete is the metaphor

by which specialized components in software are described. Tools need

to be reusable - or at least their design - must be reusable, even if a tool

is destroyed in its use. Tools cannot be so intertwined in the final product

itself as to become part of the product, by definition, otherwise they’re

just components of the product. Even so, such components need not be

melded.

Inherit - fire burns with oxygen; energetic oxygen chemistry made eu-

karyotic life, and multicellular life, possible2. The combined abilities of

the mitochondria ancestor and an as-yet-undiscovered prokaryote ances-

tor3 gave rise to great and robust diverse physical forms. Inheritance is

not merely concrete physical reproduction, but the abstract intertwining

of information itself. Inherited structures can be highly irreducibly com-

plex; very difficult to decouple4.

Reflect - mirrors are used to look at things from different angles, in-

cluding the self. The greatest power comes from being able to change

oneself; changing oneself requires being able to look at the self. Chang-

ing the self without discipline or principle leads to fragile development.

A strong foundation guides development of a well-defined self but with

flexibility and dynamism over time.

Composing generalizations - the boundaries where compositions hap-

pen define a set of general expected behaviours. Any components that

can spoof those behaviours can be used at those boundaries.

Composing specializations - where special cases exist in general be-

haviourial requirements, special components can exploit acute knowl-

edge for better performance. Special components can be automatically

2https://doi.org/10.1073/pnas.96.23.12971
3And speculatively, possible separate ancestry of other organelles.
4https://www.talkorigins.org/faqs/comdesc/ICsilly.html
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matched, implicitly or explicitly, to special cases.

Inheriting generalizations - generalizations can be formalized to al-

low indirect fulfillment of the requirements. Adaptor specifications can

be specified by component interfaces and stable protocols, and imple-

mented by third party plugins, just like how peripheral hardware can all

be adapted to a USB interface.

Reflecting specializations - mathematical identities are static patterns

for transforming from one truth to another truth, without error or loss.

Upon application of identities on dynamic problem spaces, the patterns

are reified into rules and strategies for finding better fitting solutions.

Generalization and specialization - unified by overloading. One name

can be used to establish a relation between multiple incarnations of the

same underlying notion. The name generalizes a notion, while parame-

terization specializes.

Inheritance and reflection - unified by structure relaying. Many fa-

cades can reuse a structure, especially if they’re related. Once a facade

is obsolete, the subsequent facade can be re-layed on the structure. The

structure is relayed from one stage to another: the runners change, but

the baton remains the same.

Composing inheritance - entities in the real world fit many categories;

exhibits many disjoint and blended behaviours. Categories and behaviours

be can be mixin to the one object in order to be used in many different

contexts just like real objects can.

Composing reflectively - components, by and large, do not assemble

themselves. Components define their internal structures, and what is

needed to create those structures, but materials come from the outside.

Entities build components from looking at a detailed plan, source the

needed parts, and inject them into correct positions.

Generalize reflections - images of static objects can reproduce great

amounts of detail, devoid of motion blur. Such images have limited infor-
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mation of how the object moves or its how parts work together. In many

problems we are not looking for exact replicas, but something of sufficient

likeness of how an object behaves.

Specialize inheritance - most knowledge comes from the future, so not

all paths can be set in stone in the present. Paths can, however, be pre-

ordained for limited categories of known possible cases. When actual

cases are encountered in the future and classified, they are dispatched

to the path most specialized for their categories.
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Part II

Syntax
TONAL can be thought of as a language to control a program called a

compiler. A TONAL compiler can be thought of as an interpreter that pro-

cesses TONAL commands to execute instructions and produces a program

as output. TONAL commands tells the compiler to do things such as define

a name as a type; define a name as a function inside that type; define the

parameters and the command sequence of that function; and so on and

so forth. TONAL does not make a distinction, or give nomenclature to,

statements, compound statements, declarations, expressions, definitions,

lvalues, rvalues, glvalues, prvalues, xvalues. TONAL commands are all

there is, whether they command the compiler to make a definition, or to

invoke the definition. There is no essential difference in terms of syntax.

5 Archetypes

Table 1: All TONAL Archetypes
Flavah Generation | Generation ¦
Scalah long real
Vectah atom/qtom list
Tensah func type

TONAL programs are structured around six Archetypes. They are called

Archetypes because terms like fundamental datatypes only typically cover

types that fit into registers. TONAL instead has the concept of Archetypes

because every thing in TONAL patterns after them. Funcs and Types them-

selves can now fit into scheme without the extra requirement of being

machine representable. They are, after all, high level constructs to create

meaning where there isn’t any - they’re purely for us as programmers.
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Archetypes do not imply any derivation hierarchy. They are merely

archetypical of every construct in TONAL. There is no common object

that everything inherits from, because it doesn’t make sense and is un-

necessary. It would just be an attempt to artificially shoehorn everything

into one thing because it feels neat and tidy but doesn’t provide any real

benefit. Archetypes are unified in one aspect, in that they are all treated

as things that a programmer can manipulate, instead of a subset being

things and another subset being merely descriptions of things.

One way to think about the Archetypes is along two lines of general-

ization - flavah and generation. They are a bit reminiscent of the standard

model of physics, which is a nice coincidence to help with memorization

recall.

Scalah Archetypes are dimensionless values. They are single units and

the most fundamental of the Archetypes.

Vectah Archetypes are one dimensional sequence of values, which are

themselves values that can be put into other values. They generalize Scalah

Archetypes by extending what can be represented through permuting

Scalah value sequences.

Tensah Archetypes are those for which we define their meaning and

build upon other Archetypes to create new value structures. They gener-

alize Scalah and Vectah Archetypes by specifying custom behaviours and

representations that are not as fixed as those Archetypes.

Generation I Archetypes have a discrete domain; either a limited set of

values or functionality. Like fundamental particles, they are the lightest

of their flavour.

Generation II Archetypes have, ostensibly, a continuous domain (sub-

ject to machine representation, of course); a continuous set of values or

open ended possibilities of functionality and representation. They are

conceptually heavier than Generation II Archetypes.

The Long Archetype represents integer numbers, as in the Z set. It
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holds at least base 2, 64-bit 2s complement representable numbers.

The Real Archetype represents real numbers, as in the R set. It holds

at least IEEE-754 binary64 representable numbers.

The Atom Archetype are identifiers of length greater than zero used

for naming things and referring to named things. The Qtom Archetype is

a quoted Atom, representing text of any length, containing any character

from at least Unicode 11.

The List Archetype represent syntactic lists of any length containing

and/or referencing any value. There is no physical storage or ownership

of values; it is merely as if the sequence of values were written by the

programmer each time. Lists are themselves values. The values in a list

may be future-tense.

The Func Archetype defines subprograms that can be invoked with

zero or more parameters; may grab zero or more let-name views from its

environment; may be suspended and resumed; may trip conditions.

The Type Archetype defines a permutation of sets of values, their in-

variants and valid operations; may grab zero or more let-name views

from its environment; may be derived from other types. Every type and

Archetype has a type.

It may seem strange that a machine-oriented language would omit the

mainstays of other machine-oriented language, like pointers, enums, bit-

fields and unions. Perhaps they can even be placed into something like a

Generation III Archetype. But that would be going too overboard. There

is no argument that they are essential to writing code that squeezes more

performance when required. TONAL makes the case, though, that due to

their highly machine-specific nature, they are better implemented on top

of TONAL to take advantage of compile-time programming, which will

then make explicitly available all the machine-details so that physical de-

sign decisions can be made programmatically.

Consider pointers. Memory architectures have not be flat for a long

32



5 ARCHETYPES

time, not counting the unused segmented memory feature of certain pro-

cessors. There are variations in cache architecture; the availability of

coprocessors like GPUs; expansion peripherals; networked distributed

systems. Direct memory access over all these systems is thus a much

more complicated affair. Even operating-system provisions like memory-

mapping makes it harder to pretend to have a flat address space. Safety

issues with pointers is well known - most commonly out-of-bounds access

in various guises (including pointers not derived from initialized mem-

ory), and leaks. Garbage collection may also come into play.

All of these issues argues in favour of a more rich abstraction over

pointers, but without unnecessary overhead, so that programmers can

actually programmatically encode and handle these differences instead

of relying on documentation, compliance, and imprecise checkers. Expos-

ing some of these details allows programmers to programmatically make

design decisions taking into account correctness and flexibility without

sacrificing performance.

Bitfields and enums can actually be implemented as library solutions

now that we have a language in TONAL that prioritizes undifferentiated

compile-time generic programming. Unions are more of a challenge, but

again, with undifferentiated compile-time generic programming, some

options are open that were not available with native unions, such as compile-

time tracked unions in addtion to traditionally tagged unions.

Archetypes are how TONAL realizes undifferentiated compile-time generic

programming. Archetypes behave just like any other object, but a TONAL

compiler knows the value of Archetypes. All Archetypes must have val-

ues known at compile-time, but values of other types can also be used by

the compiler for undifferentiated compile-time generic programming if

they can be converted to and from Archetype values. Archetypes makes

the undifferentiated possible by using value semantics instead of using

syntax and type-system tricks.
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6 Literals

Literals are the syntax for introducing Archetype values into TONAL pro-

grams. Literals are contiguous sequences of characters that have no syn-

tactic substructure that can be edited without changing its value (other

than padding zeros for numbers).

The Literal Archetypes are Long, Real, and A/Qtom. In TONAl, space

characters are reserved for separating individual tokens of source. There-

fore only Qtoms are an exception, and can contain any space character.

Quotes, apostrophes and parenthesis are also considered to be separating

characters.
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Figure 6.1: Railroad diagrams for subtokens common to Real and Long

Literals.
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Figure 6.2: Long Literal railroad diagram.
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Figure 6.3: Long Literal railroad diagram (continued).
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Long literals can be negative or positive. They can be binary, octal,
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decimal, hexadecimal, base36 and base64. Decimal is the default when

no radix is specified. The default digit separator, a comma, can be used to

break up large numbers for readability.

Figure 6.4: Real Literal railroad diagram.
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Figure 6.5: Real Literal railroad diagram (continued).
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Real literals can be negative or positive. They can be decimal or hex-

adecimal. Decimal is the default when no radix is specified. The exponent

is decimal, but in powers of 10 for decimal, and powers of 2 for hexadec-

imal.The default digit separator, a comma, can be used to break up large

numbers for readability.
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Figure 6.6: Atom Literal railroad diagram.
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Atoms can contain any non-space, non-dot, non-parenthesis, non-apostrophe

character. Atoms can form paths, with a single dot as a separator, in order

to refer to objects within enclosures. Atoms with the @ character(s) are

reserved by TONAL.

When discussing the structure of the Atom, we use the AnAtomy.

rooted branch = a.b.c.d.e (6.1)

node = a, or b, or c, or d, or e (6.2)

root = a (6.3)

leaf = e (6.4)

bud = .e (6.5)
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stem = a.b, or a.b.c, or a.b.c.d (6.6)

limb = d, or c.d, or b.c.d (6.7)

branch = d.e, or c.d.e, or b.c.d.e (6.8)

By far the most natural way to structure information in computer sci-

ence is the tree. The shape of botanical trees are a natural way to visualize

hierarchical relationships between information. Cladistics and program

structures naturally are organized in the same way.

Computer science has mostly ditched the tree metaphor in favour of

mathematical terms, because maths pays but botany doesn’t. TONAL takes

the tree metaphor and botanical terms to make the AnAtomy less abstract.

The nodes 6.2 of an atom 6.1 are like the nodes of a plant that are points

along the plant where structures sprout from. The root 6.3 does not have

nodes preceding it, while the leaf 6.4 is at the very end, just like they are

in plants. A bud 6.5 grows out of a node.

A stem 6.6 is a root with nodes budding up any number of times before

the leaf. A branch 6.8 is any node that is not a root, budding any number of

nodes up to the leaf. A limb 6.7 is the common part of a stem and a branch;

that is to say any non-root nodes budding up any number of times before

the leaf.

Most atoms in code will technically be branches because the stem is

contextually implied. The branch/limb/stem distinction allows us to talk

about the parts of an atom without having to clarify whether there is a

root/leaf node or not.
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Figure 6.7: Qtom Literal railroad diagram.
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Qtoms do not differentiate between characters or strings as in other

languages. All unicode characters are valid in TONAL, so they can be used

in Qtoms without hexadecimal codepoints. Qtoms are immutable.

Qtoms can be raw, with a user-specified delimiter, so they can contain

the Qtom quotes and the escape-character without escaping. Raw Qtoms

that contain formatted/syntactic data, like regular expressions, can use

the user-specified delimiter to specify the syntactic engine for 3rd party

tools for validation, highlighting, autocomplete etc. The delimiter can be

accessed programmatically.

Figure 6.8: Unpack Literal railroad diagram.

unpack

... atom

qtom

list

Unpack is the only literal allowed with multiple dots. They are used to

specify pack-parameters, or to expand argument packs or lists in place.

Figure 6.9: Skip Literal railroad diagram.
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Skip is used to explicitly skip the rest of the current (possibly empty)

pack-parameter, or to skip the current defaulted parameter; to the next

parameter.
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6.1 Labels and Comments

Figure 6.10: Label and Comments railroad diagram.

label

( qtom )

Labels serve as named locations for non-linear local control flow. La-

bels appearing before control flow can be used as early exits. Labels also

should be descriptive, so to encourage that, labels are just Qtom literals.

And because Labels are just Qtom literals, they are also just Comments.

It comes full circle, Labels are just Comments, and so both should be de-

scriptive.

Having Labels as Qtom literals, as part of the regular syntax, also means

that there is less friction between the language and special documenta-

tion syntax used for generating documentation. External tool support is

not an afterthought.

Labels and Comments can be placed anywhere as they are ignored by

the compiler for the most part. Labels that are jumped to are preserved,

and so may only be placed in certain positions in Tonics that can actually

be jumped to. For example, it makes no sense to jump to a parameter

definition.

7 Tonics

Anything in TONAL that is not a literal is a command. All commands are

girt by parentheses, so technically, a Label Literal is actually a command,

but they have no other role than pure syntax. There are no other delim-

iters used for nesting, so all those characters are available to be used in

Atoms.
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Figure 7.1: Tonic Form railroad diagram.
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The main form of a TONAL command is called a Tonic. All Tonics have

two main positions - the Verb, and the Subjects. Literals in the Verb posi-

tion are called Verbs. Literals in the Subjects position are called Subjects.

They are usable interchangeably. Verbs are doing words, which tells a

TONAL compiler what to do. The Subjects controls what the Verb does,

beyond just what word is the verb.

All commands follow the basic Tonic form, with special forms depend-

ing on the verb and subjects. There are no special syntaxes for things

that are present in other languages, like compiler directives, macros, at-
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tributes, generics, annotations, formatted comments, manifests, service

connector definitions, build files, etc. From here on, all syntax diagrams

for any of the scale degrees will omit the opening and closing parentheses.

Table 2: Syntax Scale Degrees
Do Tonic

Re Supertonic

Mi Mediant

Fa Subdominant

So Dominant

La Submediant

Ti Subtonic

The Tonic form is so-called because it has an analogous function in

TONAL in that it sets the tone for the rest of the language. Tonic is used

within TONAL in a few senses. In a general sense, it refers to all forms of

TONAL commands, being the Tonic scale degree; but in discussions with

the other forms, it refers to commands that are not the other scale de-

grees. The other forms are either very apt, or very not, analogies of the

seven scale degrees.

Figure 7.2: Dominant Form railroad diagram.
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The most dominant form of command in TONAL is the Dominant form,
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which occurs when the Verb is an atom in the form of a path. The Object

position is the atom path all the way up to the final dot, and the Verb po-

sition is final atom in the path. The dotted notation is familiar to all pro-

grammers by evoking the Object-Oriented paradigm, which is the most

dominant paradigm in the software industry and feels completely natu-

ral with the Object position referencing some enclosing context for the

Verb.

Figure 7.3: Subdominant Form railroad diagram.
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The Subdominant is not as dominant a form, but belongs to the same

Object-Oriented paradigm as the Dominant form. The first Subject serves

as the Object in which to try to find the suitable Verb, just like the Object

part of the Dominant form’s Object-Verb. If the Object doesn’t enclose the

Verb, or there is no Object (and therefore no Subjects), then this is just

a Tonic and the Object is whatever encloses the Verb, when it is found,

starting from where the Tonic is invoked.

The Tonic, Dominant, and Subdominant are essentially the same form

with the same purpose - invoking a func. The other forms are special

syntactical forms with meanings defined by the TONAL language and so

will be discussed in their own sections.

The terms Dominant and Subdominant may also applies to Atoms with

the same format as their Verbs, but not in the Verb position. In the context

of such usage, use Dominant Tonic and Subdominant Tonic to refer to the

Tonic instead of the Atom literal.
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8 Scores - Keys, Bars, and Clef

A musical score, in overly general terms, is a composition that has a clef, a

key signature, and bars. A clef delineates the beginning of the score. The

key signature is considered in its entirety, and simultaneously across all

bars. It imparts tonic structure to the notes. The music plays through the

progression of the bars. There may be repeats. There may be jumps to

labelled positions.

In languages like C++, compound statements are a list of statements of

code. The body of a function or the block of a scoping keyword, like if, for,

try, etc are compound statements. The program’s execution progresses

through these statements. The body of a class is compound statement and

member declarations are processed before their definitions.

TONAL uses the musical metaphors of keys, bars, and clefs to avoid

ambiguity and overloading of terms. The clef uses the empty list syntax

to visually distinguish and demarcate the preamble from the sequence of

tonics that make up the implementation.

Keys are the sequence of tonics following the clef that are the TONAL

equivalent of the body of a class in languages like C++.

Bars are the sequence of tonics following the clef everywhere else that

are the TONAL equivalent of the body of a function, or the compound

statements of scopes. However, bar semantics are not only limited to bars.

Even keys have bar-like semantics in some cases, just like how musical

scores can have key-changes.

9 Major/Minor Distinction

Take the equation:

y = ax+ b (9.1)

48



9 MAJOR/MINOR DISTINCTION

In fact, you may have a few equations:

y = ax2 + bx+ c (9.2)

sin2(θ) + cos2(θ) (9.3)

Are they statements? Are they declarations? Are they expressions?

Are they sub expressions? Are they definitions? Are they compound state-

ments? There are many different terms in many programming languages,

with subtle differences between them, often based on how their grammar

is specified or what their compiler’s frontend parser calls them. To peo-

ple writing programs, it doesn’t make a difference what they’re called.

They look like what they look like and things that look alike should be-

have alike.

In primary school, we learn about BODMAS/BIMDAS/PEMDAS. Pro-

gramming languages extend the order-of-operations with language spe-

cific operators, but the principle is the same. Some calculations take prece-

dence over others and their result is unofficially remembered while the

rest of the calculations are performed.

In the equation 9.2 on the current page, the term ax2 gets processed

first. In that term, the x2 term gets processed first. That produces a value

- that doesn’t have its own name - which gets used in a product with a

to produce yet another anonymous value. The value of x2 can now be

discarded. Then the next term that gets processed is bx, producing yet

another anonymous value. There are now no more exponents or mul-

tiplications to process. The next term to process is ax2 + bx using the

anonymous values that were calculated, producing yet another anony-

mous value. The values of ax2 and bx can now be discarded. The next

term to process is ax2 + bx+ c, using the anonymous values that were cal-

culated, producing yet another anonymous value. The value of ax2 + bx
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can now be discarded. Finally, y = ax2 + bx + c is processed, giving the

anonymous calculated value the name of y.

Then we move on to the next equation 9.3 on the preceding page, do

the calculation, but we don’t use the final anonymous value.

The value of y may be used again and again in further equations. Equa-

tions can just be added one after the other, as we do when calculating

systems of equations.

Two patterns are established: one pattern is the calculation of interme-

diate terms, according to specific ordering rules, to be used for an overall

equation; the other pattern is the calculation of full equations themselves,

one after the other. In fact, in the example given, because equation 9.2 on

the previous page and equation 9.3 on the preceding page do not share

any references to named variables, they can be calculated out of order,

which is a fact that compilers and processors can take advantage of to

speed up calculations.

TONAL gives names to only these two patterns of code, which reduces

confusion due to many terms that mean similar things that have no bear-

ing on what programmers actually think about.

Figure 9.1: Major/Minor railroad diagram.
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aOther components of the Tonics are omitted for clarity - to illustrate the relationship

between major and minor only.
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The order of operations for languages like TONAL is specified by this

acronym - P. P stands for Parenthesis. Parenthesis (ie, Tonics) are always

processed first, and in a left-to-right order. Tonic subjects that aren’t Ton-

ics are either names or literals, so they are already processed. Every Tonic

subject that is a Tonic is a Minor Tonic. Major Tonic refers to an unlimited

sequence of Tonics that either do some processing and the final value is

ignored, or are Supertonics, including but not limited to those that bind

a name to a value. They are found only in a Subtonic called a body in

certain declarative or control flow Supertonics.

The Major and Minor nomenclature recalls the music theory theme,

but has a hierarchical relationship compared to the musical function of

major and minor keys.

10 Supertonics and Subtonics

Figure 10.1: Supertonic Form railroad diagram.
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Supertonics are Tonics with special powers through the magic of Keyverbs.

Not keywords, but Keyverbs. Keyverbs are Verbs with predefined spellings.

TONAL does not have the concept of reserved keywords that other lan-

guages have, in order to give programs more freedom in naming things.

Keyverbs are Verbs, so they are only reserved for the Verb position, unlike

keywords, which are reserved regardless of where they are used.
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Some Subjects of Supertonics are words in specific positions in the en-

closing Supertonic. They could have been made to be Keyverbs but they

don’t have use outside of their respective Supertonics so it’s a waste of

a Keyverb. They don’t need to be reserved keywords because they have

extremely limited uses. Subjects that are Atoms in specific position are

reserved just for that position, because there could be no disambiguity

with a let-name. In that, TONAL takes after C++ (as discussed in Influence

on page 15) where, eg, the location specific keywords ’override’ and ’final’

get around the potential explosion of reserved words that are commonly

used names in programs.

All Keyverbs live within the type ’gut’ that serves as a namespace. The

’gut’ is preferably omitted in code, but for special circumstances. In the

event a new language feature is introduced with a new Keyverb, that

Keyverb may conflict with existing code that may have used the atom to

name one of their let-names.5 TONAL allows programmers to temporar-

ily reassign a local replacement Keyverb so that it is painless to upgrade

to a new version of the language without unexpectedly changing seman-

tics. The Keyverb can then used with the local replacement, or be used

with the ’gut.’ prefix.

The ’gut’ type is special - any Atom path (not necessarily in the Object-

Verb Dominant position) that starts with ’gut’ unambiguously refers to

anything that is contained within the language defined ’gut’ type. Other

special types are ’hype’ and ’std’ and have the same semantics, but they

do not define any Keyverbs. In the event a new language feature is intro-

duced with a new special type, that type may conflict with existing code

that may have used to atom to name one of their let-names. TONAL allows

programmers to temporarily reassign a local replacement atom to use as

that special type.

5This only affects atoms in the Verb position of a Tonic, since this is what the concept of

Keyverbs is designed for. If a program has existing things with the same name, but are used

in the Subjects position, then TONAL will never mistake them to be Keyverbs. But still, be

sensible about it, and don’t name things that reuse Keyverb names just for the hell of it.
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The temporary local reassignment does not transfer over to included

source files when such a reassignment is in effect. Programmers often

want to view a source file separately, out of context, and it would be con-

fusing to not see the regular Keyverbs.

Even the command for the temporary local reassignment of Keyverbs

and the special types are themselves Supertonics, so it would be easy for

an ad-hoc parser to do the same processing that TONAL does to handle

these reassignments.

Figure 10.2: Supertonic Form railroad diagram.
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Subtonics are Tonics with bits missing, like having a Verb position, that

are Subjects of Supertonics. They can miss out on having a Verb because

their position within the Supertonic tells it what it is. Subtonics only has

Subjects and do not have a Verb, but they still must not have a Keyverb as

the first Subject even if it views a legitimate let-name that is not a Keyverb.

This is not because TONAL cannot disambiguate it - it definitely can.

The issue is due to ad-hoc tools. One of TONAL’s design points that

emerged is that Keyverbs provide a significant opportunity to design for

allowing programmers to write ad-hoc tools. Keyverbs are relatively few

in number and have only one position - ie, after a parenthesis - so it would

be easy to write a small tool from scratch that only looks for Keyverbs. Or

the tool can look for things that are not Keyverbs in the Verb position.

Authors of such programs would not have to deal with ambiguities just to

get an ad-hoc tool working.

Supertonics have very specific forms, but they all follow the Tonic

with a Keyverb pattern, so an ad-hoc tool can simply skip over the things

they’re not interested in. They can safely ignore nesting in most cases,
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because Supertonics largely mean the same thing. In cases they don’t,

their pattern of Subjects and Subtonics are different from Supertonics; or

if necessary, it’s easy to find the enclosing Tonic to get the context.

Some Supertonics have alternate forms. The Mediant forms are re-

lated to pattern matching, and they are limited to only a few unrelated

Keyverbs without much commonality between them. In short, it is easy

to remember M for Mediant, M for matching.

Figure 10.3: Submediant Form railroad diagram.
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Supertonics that are scoped control flow commands have a special

form, unchanged, that are the Verb of a Tonic with no Subjects. And apart

from lists, Submediants are the only form that allows a Tonic as its Verb.

The purpose is straightforward. The Supertonic is a Verb, so it is in-

voked. TONAL does not follow other modern languages in making every-

thing an expression, so flow control constructs don’t evaluate to a value.

There are uses for this, hence its popularity in other languages6, and C++

has a way to achieve this called “Immediately Invoked Lambda”. The Sub-

mediant syntax was chosen for this reason, because having a Supertonic

as the Verb is like immediately invoking a lambda. The difference is that

there isn’t a local func that’s constructed that would require grabbing the

local environment, and it is not storable at any memory location.

10.1 Keyverbs

TONAL tries the reserve as few Keyverbs as possible. Even though the

Keyverb design means there are no reserved keywords, it’s still better

not to have too many different primitives for a language. With a mix of

6The tertiary operator in C and C++ are similar concepts, but the only example in those

languages.

54
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Keyverbs and placeholder atoms, we can increase the variations without

increasing mental load.

On the flip side, we don’t want to get into the same situation as C++

where the keyword “static” has taken on so many different contextual

meanings.

All in all, TONAL will try to reuse Keyverbs provided that there’s a

clean syntactic break from existing Supertonic forms and that the mean-

ing of the Keyverb strongly relates to what the other forms, and the word

itself, means.

Keyverbs fall in five categories.

Declaration keyverbs are those that introduces a distinct thing.

Control Flow keyverbs are those that does linear jumps; related to

branching.

Control Jump keyverbs are those that does surprising jumps; they are

either easy to abuse and widely considered harmful, or they are expen-

sive to use, or they are hard to follow and mistakes create surprising side-

effects.

Lifecycle keyverbs are those that control the cleanup of things that

were constructed.

Access control keyverbs are those that alter the default settings of who

can touch what and do what.

Table 3: Keyverbs with major supertonic form
Declaration Control Flow Control Jump Lifecycle Access Control

let if/i� wait push-in readers
func loop give pull-in writers
type stop goto push-out virtual

next trip pull-out include
eval trap grab

Every Keyverb except the list specifier can be used in major form. Not

all of them can be used in a declarative body subtonic, and not all of them

can be used in an imperative body subtonic.
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Table 4: Keyverbs with minor supertonic form
Declaration Control Flow Control Jump Lifecycle Access Control

func push-in readers
type pull-out writers
() virtual

include

List specifiers can only be used in a minor form, because the list must

be either assigned to a let-name, or passed to a Tensah.

Table 5: Keyverbs with mediant form
Declaration Control Flow Control Jump Lifecycle Access Control

let push-in
func
type

Table 6: Keyverbs with submediant form
Declaration Control Flow Control Jump Lifecycle Access Control

let if/i� trap
func loop
type
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Part III

Objects

11 Taxonomies

TONAL is defined in terms of an abstract machine (AM, herein). This AM

is assumed to be running on top of the C abstract machine, which in turn

generalizes a basic hardware model; however, this is not a prerequisite

or part of the definition. The ‘bit’ (not assumed to be a binary digit) is

assumed to be the lowest level of information of the AM.

Figure 11.1: Values, Instances, and Objects.

value object
instancetype identity

be
st
ow allocate

Abstract Machine

let name

let name
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A value in the AM is a finite sequence of bits. By themselves, they have

no intrinsic meaning. Nothing can be done unless the AM bestows a type

upon the value.

An instance is a specific value with a type; a member of the set of all

valid potential values of a type. The AM allows us to discern all that can

be done with (or involving) an instance, but it doesn’t tell us where, when,
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and what order those things can be done.

An object is an instance with an identity allocated by the AM. Whereas

values may have a matching sequence of bits but their equivalence is un-

defined; and matching instances may be equivalent but their identicality

is undefined; an object is only identical to itself, but may be equivalent

with other, non-identical, objects. The AM enforces the constraint of iden-

tity, whether or not that object’s identity is accessible.

The term ‘variable’ is often used to talk about an object or its value in-

terchangeably, so for the purposes of this document, the term ‘let-name’

will be used instead, because variables are often defined with a ‘let’ com-

mand. A let-name is a proxy to the identity of an object in the AM. A let-

name allows us to discern where, when, and what order things can be

done with (or involving) an object.

Table 7: Abstract Machine tenses
Present-tense

roughly corresponds to

Compile-time

Future-tense Run-time

Past-tense Moved or destroyed

A let-name is in either ‘future’, ‘present’, or ‘past’ tense. A let-name

in future-tense means its object’s value is only known when the compiled

program is executing. A let-name in present-tense means its object’s value

is known when the AM is executing TONAL commands. A let-name in

past-tense means that the AM has disassociated the let-name from its ob-

ject’s identity. Using a past-tense let-name is an error. The dissociated

object may have a new let-name bestowed up on it by the AM.

A present-tense let-name might move to future-tense if it interacts with

an object’s value not known to the AM, or another future-tense let-name.

A future-tense let-name might move to present-tense if it is wholly re-

placed by an object with a value known to the AM.
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Figure 11.2: The composition of objects.
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Objects may be made up of other objects, as defined by the object’s

type. Those objects are called ‘enclosed’, and the object that encloses those

objects is the ‘encloser’. The identity of the encloser is dominant over the

enclosed; the identities of the enclosed are subdominant to the encloser.

The identity of enclosed objects are reachable only through the identity

of the encloser.

In the real world, complex objects are composed from smaller objects –

like Generic-Brick-Construction-Toy. TONAL’s primary design tool is com-

position of smaller objects. To make cost-efficient complex objects, de-

signs have to be built around well-defined, standardized interfaces – like

Generic-Brick-Construction-Toy. Adherence to interfaces and their require-

ments do not dictate how an object meets them, only that they declare that

they meet them.

Objects can implicitly adhere to an interface as long as the generic Ten-

sah that is called upon it accepts it in the present-tense. Objects can ex-

plicitly adhere to an interface by its type being derived from the interface.

Such an interface is called the object’s base type; objects can have more

than one base type. A base type can be a partial or complete implemen-

tation of an interface. The base type object is enclosed by the deriving
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object, but allows the deriving object to be used as though it is that en-

closed base type object.

Real world objects interact in limited ways, even when they’re part of

the same object. Many objects have some surface boundary that other ob-

jects interact with and prevent them from touching the insides. But even

for objects inside that surface, not all of them should be able to interact

with each other. By way of a car analogy: a car should not touch the in-

sides of another car; a driver needs to be granted access to some parts

inside of a car; a passenger could be granted access to a much smaller

set of parts; a car’s exhaust and its air conditioning system shouldn’t ex-

change gases.

Objects have control, in the present-tense, over which of its enclosed

objects – including base type object – that other objects can have access

to. They can even control access between enclosed objects.

Read access allows an object’s value to be used. Write access allows an

object’s value to be modified. Virtual access allows an object to customize

how its base type object performs some function. Grab access allows an

enclosed Tensah, one which doesn’t implicitly grab its encloser, to access

its co-enclosed objects. Include access allows Tensahs and data defined in

external files to treated as being defined in-place.

TONAL access categories are independent of each other. eg, we can

read the level of a fuel gauge, but we use a special process to add more

fuel, not by manually writing the level of the fuel gauge itself. eg, you can

customize your order in a restaurant, but you don’t actually direct how

the chef makes it.

12 Conditioning

Error handling in most languages is added as an afterthought and not

treated at language level. For languages with error handling support, like
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the common try-catch-exception scheme, they only cover runtime errors.

In languages like C++, it is even impossible to enforce at compile-time

whether, and which, exceptions need to be handled. On the flip-side, lan-

guages like Java require declaring exceptions as part of the function sig-

nature, and/or for exceptions to be handled, which can be quite annoying.

The exception concept can also be confusing because it’s supposed to

be used only for exceptional circumstances. If naming is the most difficult

task in programming (and science in general), then categorizing things

is the second. “Exceptional” means something different to everyone in

different environments and time-of-day. There is no universally agreed-

upon understanding of what constitutes an exceptional circumstance.

Many APIs have error codes or status code that is either returned from

function calls, or has some global state that must be documented and

checked after every API call. Return codes may be annotated to force the

compiler to issue some warning or error if it hasn’t been checked, but

global state errors have no language support. Status code reports on a

status which may or may not be considered exceptional, but all else be-

ing equal, the designers of such an API would prefer programmers check

the status before continuing.

Assertions, pre-conditions, and post-conditions enforce contracts that

cannot otherwise be enforced through the use of types. For example, a

ranged-integer type is used to enforce contracts about accepted integer

ranges in APIs that use it, but the ranged-integer type itself can only use

raw integers. It has to use contracts, because there aren’t restricted types

all the way down.

Implementations of contracts in most languages tend to be enforced at

runtime, and they also tend to evaluate to immediate failures. External

tools may be needed to handle these failures in order to do useful things

like automated testing. In C++, static_asserts cannot be handled at all,

as they cause compile-errors on failure, so they are impossible to test in
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an automated way without some macro trickery to replace static_asserts

with normal asserts or exceptions in tests.

TONAL conditions unify all out-of-band status reporting use-cases -

non-return code schemes, in other words. They syntax is broadly the

same as exception handling in other languages. Conditions are not thrown

or raised, but tripped, and trapped (or trapped not, there is no try). Pro-

grammers get TONAL present-tense condition trapping for free, and there-

fore also get contracts and unit-testing support when and where it mat-

ters most: before the program even runs, and library/application specific

guarantees beyond just the language-level checks.

Conditions that are not trapped by a func are recorded in a set of con-

ditions so that they are tracked at present-tense. It is not necessary for

programmers to maintain lists of possible exceptions to silence the com-

piler at every function, like it is in Java. Nor is it necessary to check for a

condition every time, as it is for return codes or global error numbers. It

is even possible for the AM to track which conditions will not be trapped

and deduce an exit fast-path for a task or the entire program.

API designers set up trip-wires all around the code and programmers

trap conditions that they know how to handle.

12.1 Atonal states

The counterpart of tonal music is atonal music. Atonal conditions arise

when code is incompatible with the TONAL language. All atonal condi-

tions arise in the present-tense, generated either by the AM, or tripped by

code.

Atonal conditions that can be trapped are atonable. Atonable condi-

tions must be trapped, and possibly explicitly re-tripped in present-tense,

or it is an immediate AM-error. Atonal conditions can be used by library

designers to do things like allowing programmers to choose a different

path, such as selecting different overloads, or build configurations.
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Atonal conditions that cannot be trapped are unatonable. Tripping an

unatonable atonal condition is an immediate AM-error. An unatonable

condition can be intercepted in order to be inspected, but will escape any

trap. There are certain rules of the language, such as access rules, must

not be recovered from, because it increases the chances of errors when

fundamental properties of the language are broken if trapping them were

allowed.

The capability for regular code to trip atonal states in present-tense

to drive the AM is another way to eliminate differences between regular

code and the AM. Code can be treated as though it is just a generic exten-

sion of the AM’s operation.

13 @jectives

Atoms beginning with the single character @ have values that are injected

by the AM. For reading and parsing ease, such as for third party tools, the

@ character is forbidden from any user-defined let-name in any position

of the atom.

These values are provided to make present-tense reflection easy to use.

All values are one of the archetypes.

Table 8: @jectives for Source
@line
@�le
@date
@time
@epoc
@tick
@nest
@path
@libs
@root
@prod

These values are defined anywhere in a source file. They are non-
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contextual in that there are no enclosing objects that they can be used as a

Dominant let-name. These values expose information about the compile

process.

The value @line gives, as a Long, the number of newlines passed by the

AM before this point; @file gives, as a Qtom, the name of the current file

being processed by the AM relative to the initial working directory that

the AM started in; @date gives, as a Qtom, the UTC day that the AM started

on; @time gives, as a Qtom, the UTC time at microsecond resolution that

the AM started on; @epoc gives, as a Long, the number of microseconds

since the Unix Epoch; @tick gives, as a Long, an always increasing number

every time the AM injects this value; @nest gives, as a Long, the Tonic nest-

ing level at the time the AM injects this value; @path gives, as a Qtom, the

AM’s installation filesystem canonical URI; @libs gives, as a List, the Qtom

filesystem canonical URIs for where, and the order, in which to search for

libraries; @root gives, as a List, the Qtom filesystem canonical URI of the

directory of the root source file; @prod gives, as a Qtom, the filesystem

canonical URI of the directory of the output binary.

Table 9: Tensah @jectives
@type
@name
@object
@derived
@params
@grabs
@size

These values are defined relative to the immediately enclosing Ten-

sah. They can be accessed by Subdominant from within a Tensah, or by

Dominant with an object.

The value @type gives, as a Type, the type of the value that is the Dom-

inant. When used from within a type, it is that type. When used within a

func enclosed by a type, it is that enclosing type. If a func-enclosed func
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grabs @object, it is the type of @object. The value @name gives, as a Qtom,

the Subdominant name of the Tensah (maybe even from the @type ob-

ject). The value @object gives, as a value, the enclosing object only when

there is a Dominant object. If a Tensah grabs @object, then the object is

the Dominant object. If the Tensah is accessed via a type as the Domi-

nant, then there is no @object. The value @params gives, as two Lists in a

List, of Qtoms for the parameter names and their types. The value @grabs

gives, as a List, the types of the objects that may have been grabbed by a

Tensah. The value @size gives, as a Long, the number of bytes that an

object takes up in memory, including padding.

The value of @object and @param depends on how a Tensah is ac-

cessed: for @object, via a Dominant object vs via a type; for @param

generic parameter types are unknown until invoked. Therefore those

@jectives are not accessible outside of the Tensah being accessed. Never-

theless, the Tensah could choose to save the information when accessed

and expose the information manually.

The value of equating @type to a Type Tensah when used allows anony-

mous types to be referred to.

The values of the elements of @grabs can’t be given, as their TOWEL

may have been transferred to the Tensah. It would expose too much in-

ternal information. If the Tensah’s enclosing @object is grabbed, then it is

always the first element of the list, and the Tensah is also in the @object’s

@enclosed objects.

Memory only exists in future-tense, so the @size of all archetypes is

0. Types that derive from the Scalah archetypes do have a @size greater

than 0, even though they may have a value in present-tense. Accessing

the @size of a type may forbid some possible optimizations; such as elid-

ing v-table pointers, or eliding enclosed objects, or hoisting present-tense

enclosed objects outside of a type; since the AM must give a consistent

answer.
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Table 10: Func enclosed @jectives
@func

@early-destruction
@current-condition

@conds
@traps

These values are defined for a func in addition to the objects defined in

Tensah @jectives on page 64. The value @func gives, as a Func, the enclos-

ing func. This allows anonymous funcs to be called recursively without

having to design the language to get around to problem of how to access

something while it’s being defined. It also avoids the problem of acci-

dentally calling an overload in the enclosing type if it exists. The value

@early-destruction gives, as Long, 1, if an object is being destroyed and

a push-out has triggered an early destruction; 0, otherwise. The value

@current-condition gives the object that was tripped as a condition, as

though it were pulled-out, such that it is primed for TOWEL roundtrip.

The value @conds gives, as a List, the conditions that can escape the

func. This value can not be accessed inside the func itself, as the the list

cannot be finalized until the end of the func.

Funcs do not define an @encloser value because either a func is en-

closed by a type, in which case it already implicitly grabs the enclosing

@object or @type; or if it is a func-enclosed func, it should explicitly grab

what it needs (including the enclosing func’s @object, if it has grabbed it)

instead of blanket grabbing everything via the @encloser.

Just like @object and @params, @func can only be accessed from within

the func it refers to, for the same reason that there might be some generic

parameters that are only on invocation, or some grabbed values.

Table 11: Type @jectives
@bases

@encloser
@enclosed
@~type
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These values are defined for a type in addition to the objects defined

in Tensah @jectives on page 64. The value @bases gives, as a List, the

types and/or the present-tense value that a type derives from. The value

@encloser gives, as a Type, the type inside which the type is defined in-

side. The value @~type gives, as a func, the destructor of the type, which

is useful for anonymous types. The value @enclosed gives, as a List, the

names and the types of the Type’s enclosed objects.

As with @object, @params, and @func, these @jectives are only acces-

sible from inside the type, for the same reasons, but they could be exposed

as enclosed let-names or through accessor funcs.

14 TONAL hooks

A musical hook is a piece of music that is recalled often. The AM has hooks

for common customization requirements. They are not explicitly invoked

by the programmer, but are instead implicitly invoked by the AM at spe-

cific syntactic junctions. The hooks allow the AM to guarantee safety and

performance by reliably doing all the things that programmers eventually

forget to do at some point; or the program logic is too complex and would

get missed by the programmer. Where the AM can determine safety, the

AM can elide some invocations, bring forward invocations, or delay invo-

cation until necessary.

The following subsections explain the purpose and action of these hooks.

The syntax will be explained in Supertonic Func on page 129.

14.1 Conversion

Creating an object of one type from an object of another type is called

conversion. In some languages, it is called coercion. Relaying is sort of

like conversion, except it’s the same underlying object. Some languages

implicitly convert an object when constructing a variable, or assigning to
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an existing variable, or when passed to a function that takes a different,

but convertible type.

Implicit conversion is the cause of a lot of errors, especially in regards

to readability - code meaning what it looks like it means, and between dif-

ferent number formats. Finding the correct function that is overloaded

can result in surprises, and therefore bugs, if implicit conversion is al-

lowed.

In TONAL, all but one case of conversions are just a construction of the

type that is desired - hence there is no implicit conversion. When pruning

an overload-set of Tensahs, exact types must match, so the programmer

must explicitly use the construction of the desired type for that Tensah

parameter. Even if the parameter is a base type of the object being passed

in, conversion must be explicit.

The only case in TONAL where conversions are implicit, including up-

casting to the base type, is when there is no overload pruning. If a Tensah

doesn’t have overloads - just the one definition - then implicit conversion

can take place. There is no risk of calling the wrong Tensah. If the pro-

grammer then adds an overload in the future, the AM will then complain

about requiring the exact type to be passed.

Conversion may not necessarily result in the creation of a new object.

In the above example of a base type, no object of the base type needs to

be created. It is just has the effect of selecting the overload candidate, and

the actual object will be passed to the overload if it is the selected one. It

is as though the object were relayed as the base type, but without actually

relaying the object being refered to.

A similar case is conversions of a machine number type to a wider

type, such as from char to int, or float to double. No underflow or overflow

errors are possible with widening conversions, so no copy is required

when converting for the purposes of selecting an overload from the set.

TONAL’s present-tense programming is enabled by the use of the archetypes.
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An object, maybe of a user-defined type, is considered present-tense if it

is convertable to one of the archetypes. The unpack literal can be used on

a user-defined type if the type can be converted to an archetype list. The

list itself is present-tense, but the elements do not need to be.

14.2 Redirection

Generic programs might require the programmer to make an object look

like a different type by way of wrappers/adapters/bridges/decorators. In

some extreme cases, for example, the wrapper type may map close to the

destination type, but due to some design constraints, cannot merely in-

herit from the destination type, so the programmer would have to man-

ually connect the wrapper type’s interface to the destination type’s inter-

face.

For a concrete example, consider higher-order types, such as an op-

tional type. If an optional object contains the object of the destination

type, then we would want to allow generic programs to access that op-

tional object as the destination object. However, the optional object has

its own interface - eg a func named valid - that might clash with the des-

tination type.

Redirection would allow programmers to alter how TONAL understands

dominant atoms. If a redirection exists, TONAL will always defer to it, re-

gardless of whether other enclosed objects and overloads exist. The redi-

rection is then responsible for interpreting the atom - as a qtom - and for-

warding to the desired destination, or to an enclosed object of the wrap-

per type according to some naming scheme defined by the programmer.

Another use for redirection is to make an type behave like a func when

used in the verb position of a command.

Redirection goes to the heart of how TONAL handles dominant let-

names, so there are some restrictions that prevent redirections from be-

having like regular funcs.
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Recursion is disabled for redirections, but more accurately, redirec-

tions and their overloads are invisible from within a type, which means

any enclosed object fallback value command or enclosed func does not

see any redirections that are defined. Respectively, accesses from outside

the type only sees the redirections. This simplifies how programmers can

think about redirections, as they don’t have to worry about infinite recur-

sion from within a type in present-tense. They also don’t have to worry

about what actually gets refered to.

15 TOWEL

TONAL extends the Resource Acquisition Is Initialization paradigm that

C++, D, Ada and Rust are built on with Total Ownership With Elastic Life-

cycle.

An object, under TOWEL and RAII, is automatically destroyed when it

goes out of lexical scope. In both TOWEL and RAII, the lifetime of an ob-

ject begins when the let-name/variable is first introduced. In both TOWEL

and RAII, the lexical scope is bounded by imperative bodies. In C++, that

means the braces. In TONAL, that means func bodies and control-flow/control-

jump bodies. In both TOWEL and RAII, moves and copies are elided if an

object can be constructed in its final destination.

However, in TOWEL, moves are destructive, meaning that the let-name

can no longer be refered to after a move. It doesn’t mean that destruc-

tion isn’t performed. On the contrary, the responsibility for destruction is

merely moved to the final lexical scope that the object resides. This elim-

inates the need for a C++-style move construction and a direct memory

copy suffices (in cases where moving is necessary).

In languages like C++, RAII intersects with its type-system through type-

qualifiers - qualified types are distinct from the unqualified type in many

contexts. Constant references can extend the life of a temporary object.
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r-value references for temporary objects support move-semantics, which

alters what can be done with object lifetimes. Because qualified types

are distinct from each other, they can be used for function overloading in

those languages.

TONAL breaks away from the tradition of convolving lifetime manage-

ment with the type-system, due to the discovery that TOWEL makes type

qualifiers, not only unnecessary for lifetime management, but also not

necessary to be part of the type-system. In fact, TOWEL supertonics lets

the programmer capture the intent to read/write/discard, and that tells

the AM whether to use views, allow mutability, or no longer used in a

certain lexical scope.

Programmers can also see the intent of other programmers. Program-

mers can tell others when they no longer need to write to an object. Pro-

grammers can tell others when a let-name is only temporarily required

before being shunted somewhere else. Most importantly, programmers

can tell others who should own the object and when it can be destroyed.

One side effect of not requiring reference or const/mut qualifiers means

that funcs don’t/can’t have different overloads that takes different quali-

fiers of the same type. This simplifies API design when funcs don’t need

to explicitly handle each case. The API is not polluted with information

about type qualifiers. One common annoyance in generic C++ is having

to account for all qualifiers, necessitating the notion of forwarding ref-

erences with a syntax that is often confused for r-value references. Pro-

grammers just tell the AM and other programmers how they intend to use

an object, and the AM will take care of the correctness and performance.

Another side effect is that there is no need to talk about value cate-

gories. In C++, there is talk of l-value, r-value, x-value, gr-value, pr-value.

The differences between them can be subtle, while also not telling you

what is going on. One common confusion in C++ is the difference between

the type of a variable vs the type of the object, eg function arguments. A
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parameter’s type might be an r-value, but the type of the variable is an

l-value. The object that the variable name points to might be temporary.

With TOWEL, there is a direct physical metaphor that any person living

in a physical world can understand.

In TONAL, you’ll always know where your TOWEL is.

15.1 Func local

Programming languages and programmers can convey information by

doing nothing. The default option itself has intent. In TONAL, all ob-

jects begin life inside a func. Whether a TONAL program is executed, or

a TONAL shared library is loaded, a func is invoked that creates objects

and/or has objects created in it, that invokes other funcs which creates

more objects.

Objects are created to be modified. More precisely, objects are created

to be modified in the lexical scope they were created. Objects are com-

monly created and then tweaked a bit before being passed off to other

funcs to do work with. Programs do work, and to do work, programs have

state: objects with changing values or enclosed object values. So when ob-

jects are first created, they are non-const values: they may be written-to

and read-from. This is the same as most languages where non-const is

default, like C++, and the opposite of newer languages, like Rust, where

things are non-mut by default.

After a func local object is created and tweaked, several things can be

done with it:

1. Go out of lexical scope, to allow the destruction of the object.

2. Viewed as another let-name.

3. Be passed into a func that does work using the object.

4. Passed out of the local lexical scope as the evaluation of the func.
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5. Passed out of the local lexical scope as an output parameter.

6. Replaced with a new value.

7. Replace an enclosed object of the func’s enclosing object.

Points 5, 6, and 7 require explicit TOWEL transfers. Point 2, 3, and 4 may

have explicit TOWEL transfers. The other points do not transfer TOWEL.

With respect to point 1, func local objects remain writable until the

end of their lexical scope. At the end of lexical scope, they become past-

tense and are destroyed. No TOWEL transfer occurs - it is the default thing

that happens.

With respect to point 2, a let-name that refers to another let-name

without explicit TOWEL transfer - eg, it is not the construction of an object

- is a read-only view. No copy is made, in contrast to C++, which requires

a reference-qualified variable in order to prevent a copy. While the sec-

ondary let-name is in lexical scope, the primary let-name is also read-only.

The primary let-name still has the TOWEL of the object.

With respect to point 3, this is the same as point 2. TOWEL remains

with the primary let-name when there is no explicit TOWEL transfer, so

the func only has a read-only view of the let-name. In contrast to func-

local objects, which are expected to be modifiable in the general case;

objects passed to a func are expected, in the general case, to merely in-

form the func as to how it should operate. In this case, TONAL takes after

const-by-default languages like Rust. This strikes a balance between C++

and Rust, between usability and safety. Func-local objects knows where

their TOWEL is, whereas invoked funcs do not, so it is usable and safe

to make func-local objects modifiable by default, while being safe for ob-

jects passed to funcs read-only by default. In some ways, it is also very

usable to prevent unnecessary modification by invoked funcs, as it can

make following the logic of a program easier.

With respect to point 4, TOWEL is implicitly transferred. The func fin-
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ishes and no longer needs the func-local object. Due to the object begin-

ning its lifecycle locally, the AM has complete freedom to elide any copy-

ing or moving of the object to its evaluation destination. In actual fact,

when evaluating a func-local object, there is no TOWEL transfer, because

the AM knows to construct the object at its evaluation destination from

the beginning.

With regards to enclosed objects of func-local objects, points 1 to 3 are

the same. With point 4, enclosed objects of a func-local object cannot be

constructed at the evaluation destination.

With regards to the intersection of point 2 and 4 - evaluating a func-

local let-name view to another let-name - this requires a TOWEL transfer,

because it is not correct to evaluate to a view to a local let-name in any

language. Once the func-local let-name is destroyed when the func fin-

ishes, the view would otherwise be dangling, so a TOWEL transfer must

happen to prevent that.

Func-local objects with enclosed objects that are views to other ob-

jects have the same problem on evaluation, but such objects cannot be

constructed at the return destination at all and therefore a AM-error.

15.2 Transfer

One way to think of funcs is having an inside and outside. In most lan-

guages, there is talk of a call-stack. Depending on architecture, compiler,

and operating system; call-stacks may grow up, they may grow down,

they may be discontiguous in the face of concurrency, like threads, fi-

bres, signals and resumable functions. This variability could mean confu-

sion, since stacks, in computer-science, generally have a top; but choosing

this terminology for call-stacks isn’t very descriptive if the stack is down-

growing. In languages like C and C++, the concept of a call stack is not

even a part of its abstract machine definition, in order to allow freedom

of implementation - especially for features like resumable functions. Call-
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stacks and alternatives are just implementation details.

In computer-science, there is talk of black-boxes. Programs, subpro-

grams, and types should be black-boxes, with no coupling between the

inside of a box and the outside of a box. In RAII languages, and therefore

TOWEL, there is talk of objects being in-scope, and out-of-scope. TONAL

takes inspiration from that model, hence considers the inside and outside

of a func; of a scope.

From the outside (where the func is evaluated), the inside of a func (the

func that is being evaluated) should be completely concealed. From the

inside of a func, the outside should be completely occluded from view. The

inside and outside are only connected via the parameters, the arguments,

and the evaluation.

Figure 15.1: TOWEL transfer diagram legend.

caller action

flow of time

callee action

Cross-boundary TOWEL transfers are cooperative because of this black-

box principle. Whatever TOWEL transfers of arguments happen inside

the function is completely invisible to the outside, and vice-versa. The

programmer just has to tell the AM their intent; their constraints; their

knowledge. In the common, best, case, the AM is allowed to do nothing.

The outside can transfer TOWEL as they want, but if the inside doesn’t

do anything to accept the TOWEL, then nothing happens. The inside can

transfer TOWEL and write to objects, but it can’t affect the outside if the

outside does not cooperate.

From the outside, the two TOWEL supertonics are push-in, and pull-

out. From the inside, the two TOWEL supertonics are pull-in, and push-
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out. If a func is a box, then you can only push things into it, or pull things

out of it. If you are inside a box, you can only pull things in, or push things

out.

Figure 15.2: Cooperative inward transfer.

in out

push

pull

When you push something into a black-box, it’s gone; out of reach. You

no longer have any control of that thing. Programmers often construct an

object just to pass it to another function, to never be used again. Pushing-

in an object into a func in TONAL tells everyone that intent. The object is

constructed and is no longer required there.

But to be able to push something into anything, you must have a hold

of it. To push a let-name into a func, it must have TOWEL. Once pushed-in,

the receiving func has the object’s TOWEL - ie, responsible for destruction

or transferring TOWEL - so the let-name is considered unreachable. An

object that is constructed as a func argument as the result of a minor tonic

is automatically pushed-in. A let-name that is a view of another object or
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an object with an enclosed object that is a view to another object cannot

be pushed-in, and so, is a AM-error.

For a let-name to have an object’s TOWEL, the object must either be

func-local, or it must be pulled-in. From inside a func, all argument let-

names are considered read-only views of an object until pulled-in. This

includes the enclosing @object as in implicit argument, if the func was

invoked as a dominant or subdominant form of an object. One reason to

pull-in an argument, rather than creating a func-local copy, is to make a

func more readable without creating so many func-local let-name, when

a func argument is already well-named for the purpose.

The inside of the func has no idea whether or not an argument was

pushed-in. The outside of the func cannot know whether or not a func

pulled-in an argument. The AM does know, when in present-tense.

If the AM sees that an object was not pushed-in as an argument, and

the func pulls-in an argument, the AM must maintain the black-box prop-

erty of funcs by making a copy of the object. The outside of the func has

the original object’s TOWEL, while the inside of the func has a new object

that it can write to, as if it was created as a func-local. If the object’s type

is not copyable, then it is a AM-error.

If the AM sees that an object was pushed-in as an argument, and the

receiving func does not pull-in the argument, the inside of the receiving

func still sees the argument let-name as a read-only view. Therefore no

copy needs to be created. However, the receiving func itself has TOWEL

over the object, so it is destroyed when the receiving func has finished, at

the latest.

In languages like C++, the former is known as pass-by-value; the lat-

ter is known as pass-by-const-reference. In TONAL, this determination is

made possible because the programmer tells the AM which lexical scope

has TOWEL, and which lexical scope requested TOWEL. The programmer

doesn’t need to qualify a func parameter’s type with const or reference
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qualifiers. The programmer knows whether they no longer need an ob-

ject locally, so pushes in to communicate that knowledge. The program-

mer doesn’t have to worry about whether or not there is an unnecessary

copy on the other side.

If the AM sees that an object was pushed-in as an argument, and the

func pulls-in the argument, then the AM can elide the copy, altogether.

This avoids the AM-error for non-copyable objects. The AM might even

determine that moving the object isn’t necessary either and constructs

an object in-place inside the receiving func.

In C++, this is achieved either by constructing a temporary as an ar-

gument, or by moving an object. The function parameter would either

be a value, or r-value reference-qualified. In TONAL, the AM makes this

determination by what the programmer coded.

Func-local let-names that are views of other objects can also be pulled-

in, and has the same TOWEL semantics as an argument.

The programmer only needs to tell TONAL whether or not an object is

needed outside a func, and whether a func needs to write to an argument

object, and the AM figures out the minimal and optimal code to gener-

ate in each case. Neither the outside or the inside of the func can make

a mistake, like forgetting to destroy an object, or writing to the outside

object, or accidentally making an unwanted copy. Both sides cooperate,

rather than dictate what the other must do, or assume that requirements

are met.

Resumable functions are a traditionally tricky case that is eliminated

by cooperative inward transfer. When a resumable func is unsuspended,

the handle to the func’s control block should not be touched, because as

soon as the func is unsuspended, it may have already started executing -

perhaps on another thread - before the control is returned to the sched-

uler. In code, the scheduler still has the control block’s let-name. But

with cooperative inward transfer, the resumable func pulls in the control

78



15 TOWEL 15.2 Transfer

block. The control block’s type is not copyable. If the scheduler code does

not push-in the control block to cede TOWEL to the func, then the AM fails

in the present-tense when trying to copy. The scheduler must push-in the

control block. This causes the let-name to lose TOWEL, and any attempt

to even refer to the let-name will cause the AM to fail in the present-tense.

Figure 15.3: Cooperative outward transfer.
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push

pull

All let-names in a lexical scope with TOWEL are destroyed at the end

of the lexical scope. However, all let-names with TOWEL are modifiable.

Sometimes a programmer no longer needs to write to a let-name anymore

- they are finished with the object. They can make it aware to the AM by

pushing out a let-name. Unlike pushing something into a func, pushing

something out of a func isn’t an immediate transfer of TOWEL. In the in-

terests of safety and usability, a pushed-out let-name is read-only. As long

as the let-name is still in lexical scope, it can be referred to by a program-

mer. The AM could have somehow marked the let-name as unusable and
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give a AM-error when used, but that would defeat the purpose of allowing

a let-name to be read-only.

A pushed-out let-name can be pulled-in again. This promotes a disci-

plined approach to mutability by encouraging the programmer to make

the usage explicit; to clearly plan and demarcate the regions of mutability.

It can show problem areas: if there’s constant switching between pulling

in and pushing out; or if something remains pulled-in for an entire lexi-

cal scope without being written to. Contrast this to traditional languages

like C++ and Rust, where either something is non-const or mut forever in

a lexical scope.

The AM could decide that a pushed-out let-name can be destroyed early.

When the let-name is no longer referred to in a lexical scope, it can de-

stroy the object, as long as it is able to maintain the destruction order

guarantee. Every reference to a pushed-out let-name implicitly prolongs

its life. Some types of objects should never be pushed-out in this man-

ner. For example, mutex lock objects use the lexical scope to protect ac-

cess. An accidental early destruction would make it extremely difficult

for programmers to see such an error that can only occur sporadically in

future-tense.

Evaluating a let-name is an implicit push-out. If the let-name is a view

of an object, then it must be pulled-in when evaluating, subject to the

copying rules.
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Figure 15.4: Cooperative object transfer.
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Enclosed objects have scopes and lifetimes that are dominated by the

enclosing object. The enclosing object is subject to TOWEL, just like any

other func parameter. In order to modify any of enclosed objects, the en-

closing object must have been pulled-in at its own lexical scope, as well

as pulled-in by the enclosed func.

It is an error to pull-in individual enclosed objects, because that in-

troduces a notion of an object composed of different lifetimes, which is

not something that’s well studied. The enclosing object must therefore be

completely pulled-in. Once pulled-in, all of the individual enclosed ob-

jects must NOT be destroyed. If the enclosing object is not pushed-out

again before the end of the func, then the enclosing object is considered

destroyed.

Enclosed objects, or the enclosing object, which are evaluated from a

func, are readonly views, in the general case. If the enclosing object is

pulled-in, then the enclosed objects are considered pulled-in, and there-

fore is evaluated in the same way as func-local objects. Similarly, if the

enclosing object was pushed-in to some other func, then the enclosed ob-
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ject that was evaluated is implicitly pulled-in at the receiving scope, in

order to avoid referencing an object that is destroyed.

15.3 Round-trip

Figure 15.5: Round-trip, no transfer.

in out

push

pull

The TOWEL round-trip is the serendipitous culmination of abstraction

and intent-preservation resulting in performance with safety.

Some funcs play the role of a factory - they set up an object to some

state that is beyond the scope of its constructor. This is usually achieved

in programming languages through in-out parameters, which are typi-

cally implemented either as non-const reference or pointer parameters.
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Per-usual, the problems with pointers apply. When it come to references,

the main problem comes from C where a programmer, expecting to use a

variable as an in-out argument, neglects to provide an initial value with

a view to save a bit of time when the value is going to be overridden any-

way. Over time, as code rot sets in (code gets modified, added to, deleted

from), errors could be introduced where the value ends up being used

before being initialized properly.

An object is passed to a func for modification via the TOWEL command

“pull-out”. It evokes the imagery of pulling something out of a box. The

object is implicitly pushed-in, so that if the receiving func pulls-n the re-

spective parameter, no copy is made. When the receiving func pushes-out,

the parameter object itself is modified. The pull-out completes the round-

trip and object that was passed to the func is modified.

The AM detects these round-trips in present-tense and completely elide

any copying in or out of the receiving func.

Round-trip semantics also apply to func evaluated values under simi-

lar conditions. An object is pushed-in to the receiving func. The receiving

func pulls-in the respective argument, does something to it, then evalu-

ates it. Outside the func, if the return-value is pushed-in to the let-name

that was pushed-in to the func, then that constitutes a round-trip.

Evaluation round-trips are useful for implementing func chaining. Re-

call that an object evaluated from a minor-tonic is implicitly pushed-in to

the major-tonic func call. As the dominant object is pushed-in and evalu-

ated in a chained fashion, the TOWEL round-trip kicks in and elides any

copying or moving of the dominant object, while also eliminating the need

for explicit push-ins in subsequent func invocations.

Chaining is a common way to implement pipelines and builders but

can be tricky to implement safely with conventional type-qualifiers. Com-

posing a pipeline/builder that has to be passed along an if-else condition

means using a let-name, which means with convention type-qualifiers,
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the programmer has to handle both the l-value reference case as well as

the r-value reference case, but with a lot of care and safeguards to prevent

letting a reference dangle easily. TOWEL makes it easy to switch between

different modes pipelining with the round-trip detection.

15.4 TOWEL hooks

15.4.1 Construction

Construction is the process by which the AM creates an object, giving

value(s) a type and identity. Allocated memory cannot be read until an ob-

ject has been constructed in it. An object is not fully constructed unless its

base and enclosed objects are constructed. Base objects are constructed in

a left-to-right order. Enclosed objects are constructed in a top-to-bottom

order, after the base objects have been constructed. The AM maintains

this invariant order of construction, even if a type specifies their own spe-

cial contruction process.

The AM also supplies construction processes that makes the language

work.
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Figure 15.6: AM-supplied default construction.

DefaultConstruction Arguments...

PiecewiseConstruction

All bases
Remaining arguments

PiecewiseConstruction

All enclosed objects
Remaining arguments

End

The default way to construct an object is to provide argument values

for each of the type’s enclosed base objects, in left-to-right order, and val-

ues for each enclosed object, in top-to-bottom order. Not only is it the

default supplied by the AM, it is the default in the sense that every type is

constructed in this prescribed order. No matter how a programmer might

define a custom construction process, the AM ensures that the order of

construction is the same as the default construction.

Other languages call the constructor that takes no arguments the de-

fault constructor, but in TONAL, “default” is more suitable to denote the

order of events in all cases, regardless of construction argument counts

or which construction process is being used.

85



15.4 TOWEL hooks 15 TOWEL

Figure 15.7: AM-supplied identity construction.
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TONAL gives the no-argument construction the concept of identity. It

borrows the sense from algebra, where a special element in a set under

a given operation is the identity. Though not always the case, it is helpful

to think of a value constructed by identity construction as similar to ad-

ditive or multiplicative identities. For many types there are no suitable

identities, which can itself be a useful property to consider.

For non-Tensah archetypes, their identity is the equivalent of the in-

teger additive identity 0. The concept of 0 and empty sequences as the

identity construction carries through to all types that take after Scalah

and Vectah rchetypes, like machine number types and sequence types.

Empty Vecta archetypes values are particularly useful as the primary way

of denoting nothingness and avoids all the costly mistakes of having some

null value that may or may not be equivalent to 0. 0 is left to its rightful

place as an extant value for a scalah type, and not as a error-prone double-

meaning for a non-existant value.

Tensah archetypes cannot meaningfully have an identity value. Pro-

grammers must specify the value for any type or func object, otherwise

the whole program is in error. No program can be valid if a type is un-

known, or a func has no value. If there is some meaningful fallback value

in some operations, then that has to be explicitly supplied. The AM must

not guess at the programmer’s intentions.

For non-archetypes, enclosed objects of a type under identity construc-

tion does not necessarily have to have an identity value. A type may have

a zero-argument construction that itself provides the values for its en-

closed objects that make up its identity value. The value could be spec-

ified as a fallback alue as part of the type’s definition, or given during

construction.

If any of the enclosed object types cannot be identity constructed or

provided a value during identity construction, then the type is said not be

identity constructible.
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Figure 15.8: Common process for explicit construction of multiple objects.
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Per-object arguments...

For each unconstructed
object:

Construction

Current object
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Has more arguments?
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LazyConstruction

Current object

Is skip argument?
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All available arguments are used to construct each enclosed object for

a default construction. In the main case, a programmer provides all ar-

guments needed for each enclosed base and non-base objects. However,

they may omit the tail of the arguments if there are suitable values, such

as if the objects are identity constructible, or the type definition has fall-

back values for the remaining enclosed objects.

Alternatively, a programmer can provide a skip argument which will

also allow the corresponding enclosed object in the default construction

order to be constructed with a fallback or identity value.

88



15 TOWEL 15.4 TOWEL hooks

Figure 15.9: Common process for incidental construction of multiple ob-

jects.
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IdentityConstruction

Current object

Construction

Current object
Fallback value

Unconstructed objects...

Objects are constructed at the latest possible stage - the first read of

the object or its enclosed objects - but always in the default construction

order. The construction might not be explicit; it might be done to keep the

invariant of the default construction order.
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Figure 15.10: General construction selection.
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Any custom-defined construction process takes precedence over any

AM-provided one. A custom construction process may defer to other cus-

tom constructions, the default or the identity construction. This allows

constructions to be built-up from other constructions. This is what is

termed correct-by-construction. Proper initialization of values happen

at construction, even if the construction is delegated, instead of being left

in a partially-initialized state that is then left over for the programmer to

forget to invoke a needed non-construction func to complete.

Figure 15.11: Library-given custom construction (tonic walk).
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Constructors in other languages maintain their construction order by

limit where constructors can be called, where members are initialized,

and the precise order of those actions.

The AM ensures that the default construction order is adhered to, while

not limiting how a programmer defines a custom construction. The gen-

eral method of ensuring the default construction order is that any base

object or enclosing object that is refered to for its first time is initialized.

The value that it is initialized with is, in order of priority: 1) the value that
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it is being constructed with, or 2) the fallback value, or 3) the object type’s

identity construction. If all three are not defined, it is an AM-error.

The AM keeps track of which enclosed objects have been initialized.

This ensures objects only get initialized once. Say for example there are

enclosed objects A, B, and C. If A has already been initialized, and then

the next object to be mentioned is C, then B is initialized by the AM before

initializing C. It is an AM-error if a construction for a base, or another

custom construction for the type is invoked more than once. This allows

custom constructions to be written in a more natural form. Commands

can thus be interspersed with constructions and initializations without

breaking the initialization order guarantee.
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Figure 15.12: Library-given custom construction (base object).
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Base objects are constructed left to right. Due to the construction or-

der guarantee, or more generally, the requirement that an object’s bases

are constructed before the rest of the object is, bases are implicitly con-

structed depth-first recursive ascent.

If a base’s enclosed object is refered to, the construction order guaran-

tee must be applied recursively.
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Any virtual funcs that are invoked during construction do not dispatch.

The effective type of the object at the moment of invoke a virtual func is

the type of which the current construction process is defined for. It is not

any of its base types or a derived type. No dispatch is necessary because

the type is set/known.

Figure 15.13: Library-given custom construction (enclosed object till end).
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Any base or enclosed object that is not constructed, either explicitly

or via the construction order guarantee when referencing an enclosed

object or base, by the end of a construction is constructed. This adheres

to the principle of laziness. An object must be fully constructed at the

end of a construction, but construction of constituent objects and bases

happen as late as possible during the construction - when they are first
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read.

Figure 15.14: Common process for explicit or incidental construction of

latest unconstructed object.
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An object may not be constructed until it, or its constituent objects,

are read from. Construction is delayed until first read, leaving open the

possibility for collapsing the first construction and the multiple writes up

to the first read. In languages like C (and C++ by extension), a programmer

can declare a variable without a value, and create security issues from

using the variable without initializing it. The idea was that to specify a

value when one could not be known yet was wasteful. One may also argue

it would be less readable to assign two values to a variable without doing

anything to it in between the two assignments.

There’s nothing inherently wrong about waiting until the latest mo-

ment possible before finally setting a value to a variable, but it is easy to

forget. TONAL’s touch construction ensures that there can never be ac-

cesses of memory without an object being constructed in it. The first read
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of a variable is when it matters most that there is always a known, and

valid, value, so construction followed by zero-or-more consecutive writes

can be elided and substituted with the last written value before it is used.

It is so named to be reminiscent of the common touch utility that mod-

ifies a file’s modification time, or creates one if it doesn’t exist. Touch

construction, likewise, means something is ensured to exist in a timely

fashion.

15.4.2 Copy Construction

Copying takes one object of the same type and creates a new object of

that type. The default implementation of copy construction proceeds just

as Default Construction does, with each argument being the respective

enclosed object from the source encloser object, to make an exact copy of

the source. Operations on the source object does not affect the copy, as

one would expect.

Some types are defined to be uncopyable. If a base object or an en-

closed object of a type is uncopyable, then that type is also uncopyable.

Programmers can define a custom copy construction for special se-

mantics. Most commonly it is to define a type that is uncopyable, for in-

stance, to model something that should always be unique. Another com-

mon reason is to share resources between objects.

Copy construction is not called by the programmer, but decided by the

AM. The AM minimizes copying objects and prefers to construct an ob-

ject in its final location, enabled by Lazy Construction. Copying is only

performed if the AM is unable construct an object in its final location.

A programmer can create a let-name variable from an existing object,

but no copies are made until either the source or the copy are modified,

if allowed.
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15.4.3 Relaying

A closed file cannot be read-from or written-to. It may be opened or deleted.

Once deleted, it can no longer be opened. Once opened for reading, it may

be read from. Once opened for writing, it may be read-from or written-

to. At each stage, you have some handle to a file, but the things you can

do with it depends on the state it’s in. The states transitions can be said

to result from certain operations. eg, from the closed state, after opening

a file, the file is in an open state. Closing the file would put it back in a

closed state. Each state, with restricted operations, are good candidates

for a type.

A type may be used to represent a stage of a process pipeline. Data

that is computed during previous stages may need to be kept around for

future stages, but maybe shouldn’t be exposed in some of those stages.

Each stage of that process may have only a subset of valid operations on a

subset of that data, and that is documented/access-controlled by the type.

It would be wasteful, both in programmer/testing time, and in present/future-

tense time and memory, to create a bunch of types and objects for each

stage, moving data between them, and having old stages lying around,

taking up space, and being incorrectly used. It would be unproductive

and error-prone to have one massive type with every possible operation

for every possible stage, with only documentation (if any) to tell program-

mers what operations are valid at which stage, and the valid order of the

stages, or indeed multiple paths through the stages.

Relaying allows a let-name to be imbued with a new type, without nec-

essarily having to transfer data to a temporary location. The let-name

from that point on cannot be accessed as the old type. It is as though a

new object was created in its place, and the old object was destroyed. The

AM does not provide any relaying construction for any type.

A programmer may define a relaying that does nothing, in which case
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the representation of the object stays as it is, but is considered to have a

new type, of course providing that the new type has the same underlying

representation. Complex pipelines are unlikely to keep all data around at

all times, and their respective types shouldn’t have so much visual noise

of data that is not being used, so sometimes it is necessary to move data

to a temporary place while the new object is being constructed.

An easy way to implement a design that is amenable to relaying is to

have a suite of types that derive from a common base type. That way,

they can relay to each other without massive changes to the underlying

representation.

In an imperative body, types involved in relaying can be any size in

present-tense. In future-tense, the object’s size is the maximum of all the

types involved. As enclosed objects, its size must be the same as the initial

type’s size. Objects declared in declarative bodies cannot be relayed, as

the enclosing type must assume all of its enclosed object’s types are the

same.

15.4.4 Destruction

Something that is acquired (eg, extra memory, files, sockets, mutexes, database

connections, etc) must be released when no longer in use; and failure to

do so is a leak. Using something that has been released - including re-

leasing something that has already been released - can lead to security

errors. Human programmers tend to either forget to release things, or

forget they’ve already released something, or are bamboozle by confus-

ing or fast-changing code into believing they don’t need to release, or that

they do need to release.

TONAL calls the releasing “destruction”, like other languages. Putting

the language (AM) in charge of releasing things instead of leaving it up

to the programmer dramatically improves quality and productivity. It is

called RAII in C++. In TONAL, 15. TONAL goes further and prevents the
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let-name from being accidentally used after being destroyed.
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Figure 15.15: AM-given destruction.
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Just as construction has the top-to-bottom, left-to-right, order guaran-

tee, destruction is guaranteed to be in exact reverse. So for example, if an

older object is being destroyed, it will cause newer objects to be destroyed

first. Derived types are destroyed before the base types, so if a virtual func

is called during destruction, no dispatching to overrides takes place. The

func of the current type of the object being destroyed is called, because

the derived type has already been destroyed.

Destruction can happen when a let-name goes out of scope. Destruc-

tion can happen when a condition is tripped but not yet trapped. If a

condition is tripped during construction, only the constructed sub-objects

and bases are destroyed. If a condition escapes the destruction of an ob-

ject - ie, not the current condition that is inducing the destruction of an

object, then the entire execution context is aborted. There is no sensible

state to recover to when an object cannot be destroyed.

In TONAL, all destruction behaves like a virtual func. Destruction al-

ways starts at the most derived type and from there follows the destruc-

tion order guarantee.

16 Let-Name Lookup and Pruning

Naming things is the hardest thing to do in all of computer science, and

science in general. The next hardest is being able to find all the names.

Either names became extremely long just to differentiate from each other,

or they’re short and enclosed within other names in order to not. Names

can mean different things under different circumstances.

Like most modern languages, TOWEL names are lexically scoped. They

depend only on its location in the text of the code, not on the state of the

program. Names can be enclosed by Tensah archetypes, creating a lad-

der of enclosing scopes. In TOWEL, this term is shortened to “enclosure”.

Tensah names can be overloaded in present-tense and future-tense.
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The general scheme for let-name lookup is to start from where a name

is being mentioned. The name is searched for enclosure by enclosure on

the ladder of enclosures. The search stops when the name is found in an

enclosure. A [Tensah-]let-name is a candidate to be looked up as soon is

it has stopped being spelt. If the name cannot be found, the AM fails.

When a name is found in an enclosure, all objects with that name

forms an overload-set, from which the AM tries to prune down to one

suitable candidate. If it cannot be done, the AM fails.

The redirection operator fundamentally redefines the semantics of name

lookup. The redirection operator is essentially a program that runs in

present-tense, and so is a black-box to the AM itself. If a redirection oper-

ator is defined, then if name lookup reaches the enclosure of the redirec-

tion operator, the redirection operator is always chosen as the first and

only candidate. The redirection operator then runs in present-tense to ei-

ther produce a single object, or trips a condition to either cause the AM to

fail, or to resume the normal name lookup rules at a higher enclosure.

During the operation of redirection, the redirection operator is removed

from the candidates of name lookup while inside the redirection opera-

tor. This prevents infinite recursion. Name lookup from within the redi-

rection operator is upward limited to the redirection operator’s enclosing

type’s enclosed objects.

When the enclosure being searched is a type, all matching names are

gathered into an overload-set in any order. Everywhere else, the names

are gathered in reverse order beginning from where the name is men-

tioned - essentially reverse-construction order. Matching names gathered

via reverse-construction order are gathered into an overload-set.

An overload-set can only contain Tensahs enclosed by a type or an ob-

ject with a type archetype (ie, not a func). An overload-set can be passed

around between funcs. It is just a list of Tensahs that had been gathered

by name lookup, and can be treated like any other present-tense list. An
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overload-set can also be used in the verb position of a command.

An overload-set cannot be empty initially, as one would not be created

in the first place with name lookup cannot find a name. An overload-set

of cardinality 1 will invoke the sole element as the verb, provided that the

subjects are valid arguments to the Tensah. An overload-set of cardinality

> 1 will need to be pruned before invoke to avoid ambiguity.

Figure 16.1: Matching parameters.
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One innovation in TONAL is the generalization of parameter specifica-

tion with the concepts of pack-parameters and skip-arguments. Variadic

functions in other languages tend to only allow the extra arguments at

the end of the other parameters. In languages that also support default-

arguments, those parameters must also be specified at the end of the other

parameters, and therefore do not play well with variadic parameters.

TONAL allows normal parameters, pack-parameters, and default pa-

rameters in any order without ambiguity. The mechanism that helps achieve
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this is the skip-argument.

If an argument is compatible with a pack-parameter, then the pack-

parameter stores the argument. If an argument is incompatible with the

pack-parameter, then the pack-parameter is completed.

Consider the case of two pack-parameters, of the same type, in succes-

sion. How does TONAL decide when the first pack-parameter is complete,

when all the arguments are the same type also? In general, the first pack-

parameter stores all the arguments, and the second pack-parameter is

empty. Additionally, TONAL gives programmers the option to explicitly

complete a pack-parameter with a skip-argument.

TONAL allows default-arguments in positions other than the end. It

would defeat the purpose of default-arguments if the programmer has to

provide an argument in order to provide the subsequent argument. The

skip-argument is used in this case to allow the programmer elide the ar-

gument. The default-argument is created by the AM for the parameter, as

though the parameter was at the end of the parameter list and no argu-

ment was provided.
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Figure 16.2: Matching parameters (continued).
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A TONAL programmer is free to provide as many skip-arguments even

if there are no parameters left to fulfill. This simplifies generic program-

ming so that the programmer doesn’t have to know the exact number of

parameters of every possible context.

Unpack-arguments that happen to be empty are also treated the same

way.

105



16 LET-NAME LOOKUP AND PRUNING

Figure 16.3: Check argument with parameter.
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Exact types - and exact values in present-tense - matches are manda-

tory if an overload-set has more than one candidate, but at this point of

the process, we don’t know how many candidates there are in the overload-

set, so inexact matches are allowed. Derived type and implicit convert-

ibility/constructibility (imcluding type casts in some languages like C++)

inexact matches keep a candidate in the running the overload-set.
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Figure 16.4: Pruning overload-set.
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Overload pruning considers fulfilled-arguments to parameters from

left to right. Assume that the AM takes the i-th parameter from each over-

load and prunes all the candidates whose current parameter being con-

sidered does not match the current argument being considered.

In an overload-set with more than one member - both pruned and un-
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pruned, any inexact matches causes the pruning to fail due to ambiguity.

The AM must not try to guess at what the programmer means by trying

to find the best match, as there is no good classification preferred by ev-

ery one. It is less error prone for both the AM and other programmers to

force the programmer to explicitly construct objects of the correct exact

type in order to document which overload they desire.

Implicit conversions are the source of a lot of errors in other program-

ming languages because programmers can never have complete under-

standing of a language’s details. It makes overload resolution seem almost

random some times.
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Figure 16.5: Pruning overload-set (continued).
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Consider the case where two Tensah candidates in the overload-set

have used up all available arguments, but they both have zero-or-more

pack-parameters or parameters with default-arguments that are left un-

fulfilled. TONAL, just like other languages with overloads, operate on the

principle of tightest match wins, so in the event of dangling parameters,

cardinality is the deciding factor.

In the contest between pack-parameters and default-arguments, the
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cardinality of a parameter with a default-argument is considered to be 1,

while the cardinality of the empty pack-parameter is considered 0. The

reason this is the case is because, even though the programmer does not

provide an argument, the AM has to create one. It is physically more ex-

pensive than an empty pack-parameter, and so can be considered a looser

match, in much the same way a function with n-1 arguments is a tighter

match than a function with n arguments.

Having established that, the principle can be specified as: the fewest

number of default-arguments is the tightest match. Then, in the case of

equal number of default-arguments, the fewest number of pack-parameters

is the tightest match. Then, in the case of equal number of default-arguments

and pack-parameters, only then are their left-to-right order taken into ac-

count. Earliest pack-parameter wins, for the same reason elaborated pre-

viously.

Programmers can further control the process during the speculative-

execution step: spexeculation. Programmers can specify, in a more nat-

ural, imperative, manner, in the present-tense, constraints on the param-

eters, beyond types and present-tense values, by tripping conditions in

order to remove an overload candidate from the overload-set. Spexecu-

lation happens regardless of the size of the remaining overload-set, since

further processing can still disqualify an overload candidate and inform

the programmer that the program is incorrect.
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Figure 16.6: Subdominant Search.
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All name searches begin as subdominant searches, because all names

begin with a subdominant component. Recall that a dominant name is

dot separated, and by definition the first segment is not dot separated, so

the first segment is found via subdominant search.
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Figure 16.7: Subdominant Search (continued).
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For the most part, name search looks like a simple current-row-to-top,

current-column-to-left (ie, reverse construction order) of code in an edi-

tor. The body of a type is searched in this same order only during fallback

construction, and only for non-Tensah let-names. Once inside a construc-

tor, or in search for Tensah let-names, then all names are considered.

If a name search starts within a grab supertonic, it can only search for

names that have already been grabbed, and if not found there, does not

search parameters, but instead searches the enclosing Tensah body and so

on and so forth, since the purpose is to grab let-names from the encloser.

Parameters are already accessible from within a Tensah already.
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Figure 16.8: Subdominant Search (continued).
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In order to allow recursion for local Tensahs (those not enclosed di-

rectly by a type), the name of the Tensah is available as a candidate for

name search as soon as the name is finished being spelled. Type enclosed

Tensahs do not need this ability, because the name will be found when

the enclosing type’s let-names are searched. Tensah names enclosed by a

type can also be overloaded, so direct recursion may not be the desired

reason to refer to another Tensah of the same name.
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Figure 16.9: Let-name Match.
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Let-names immediately become search candidates as they’re introduced.

Implicit let-names may be introduced in parameter lists, base type lists,

and grabs. This facilitates more succint and safe code (debatably at the

cost of less clear code) by allowing let-names to be directly created in the

scope they will be used in.

When the search name for is a dominant name, and candidate names,

such as those that are grabbed, could also be in dominant form. Those

candidate names are treated as potential prefixes of the search name.

There is simply too much ambiguity if there are multiple candidate names

that are all prefixes of the search name. If such search was allowed, there

could be multiple overloads from multiple prefixes. Any rule trying to pri-
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oritize or prune candidates will be too complicated for any programmer

to remember, let alone understand.

Figure 16.10: Tensah Search.
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Tensah search is co-recursive-descent with subdominant search. If a

Tensah has bases, then it searches the bases with subdominant search

starting with at the bases. While in that branch, if nothing is found, it

continues with subdominant search starting at the parameters. While in

that branch, if nothing is found, it continues with subdominant search

starting at the enclosure. If the enclosure is (eventually) an imperative or

declarative body, then it could end up in Tensah search.
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Figure 16.11: Grab Search.
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Tensahs that grab the @object are somewhat like funcs enclosed by

a type because grabbing @object means being able to search the enclos-

ing object for a name. Even though @object appears in a grab supertonic

directly after the parameters, the parameters are searched before the en-

closing object, just like a regular type-enclosed func.

If a func grabs @object, and it is enclosed by a func that also grabs

@object, then the @object that was grabbed are the same for both funcs.

A func cannot grab @object when it is enclosed by a func that does not

grab its @object implicity or explicitly.
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Figure 16.12: Dominant Search.
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When searching for a dominant name with more than one segment,

only the final segment is allowed to be overloaded.

Unlike C++, objects enclosed by base objects are searched, even if can-

didates have been found in the dominant object. At first, this sounds like

a recipe for disaster, because, say, if a base object func and the dominant
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16 LET-NAME LOOKUP AND PRUNING

object func has the same arguments, then that would trip the overload-

ambiguous condition. Recall that implicit conversions are also not al-

lowed with overloads, and this would also trip the overload-ambiguous

condition.

This is actually a desirable property, because shadowed funcs become

an AM-error, with the exception of virtual funcs. Shadowed funcs are

in the same category of error as implicit conversions: the @object. The

ease-of-use is not worth the unergonomically hidden errors of implicit

conversions.

To overcome shadowing conditions, explicitly convert the dominant

object to the dominant type, or one of the base types, as documented in

Conversion on page 67.
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16 LET-NAME LOOKUP AND PRUNING

Figure 16.13: Dominant Search (continued).
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Dominant search of base classes need not follow the construction-order

or reverse-construction-order. The same principle is followed that finds

all matching names so that shadowing funcs can be reported as errors.

The constraint that the enclosing objects of the overloaded found names

be the same ensures that only the final segment of a dominant name is
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16 LET-NAME LOOKUP AND PRUNING

overloaded.

Figure 16.14: Multiple Dispatch.
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When an overload-set contains funcs that evaluates to different num-

bers of arguments, the normal pruning process will have already pruned

the candidates with the best matching arguments to parameters. If the

overload-set still contains multiple candidates, then normally this trips
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16 LET-NAME LOOKUP AND PRUNING

the overload-ambiguous condition. This changes when any of the param-

eters are virtual, and are the cause of the ambiguity.

When any parameter of any func in the remaining overload-set is vir-

tual, then multiple dispatch pruning kicks in - in present-tense if types

are known in advance. This covers the most common case of first/object-

argument single-dispatch of most object-oriented languages, and induces

the same, desirable, Tensah overload-shadowing AM-error behaviour. It

is ergonomic, correct, and simple, to extend this behaviour to all funcs

with at least one virtual parameter in any position.

The verification of equal number of parameters - of all overloads -

and arguments takes into accounts pack-parameters and defaulted argu-

ments.

Figure 16.15: Multiple Dispatch (continued).
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The normal name search and pruning rules forbidding implicit-casts

implies that virtual parameters of overloaded funcs will always be in the

same position(s).
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16 LET-NAME LOOKUP AND PRUNING

Consider just the derivation-distance of the types of virtual parameters

of the following:

f(3, 1) (16.1)

f(2, 4) (16.2)

f(1, 2, 1) (16.3)

f(2, 1) (16.4)

Between 16.1 and 16.2, it might seem intuitive to prioritize lexicograph-

ical ranking of virtual overloads. After all, it’s easy: distance-2 is obviously

a better match than distance-3; the distance-2 argument comes before the

distance-4 argument; pruning for normal funcs does it that way. But does

that mean 16.1 is a more closer match than 16.2?

In normal funcs, all parameter types are known exactly in present-

tense, due to the elimination of implicit-casting. So it makes sense for

a lexicographical scheme to be used for ranking default-arguments and

pack-parameters. Virtual-ness changes the semantics of matching because

the type is no longer known exactly in present-tense. Inexact matches (ie,

derivation-distance > 1) are acceptable as long as there exists an over-

load with a parameter type that the argument can be downcasted, which

means that, as 16.1 illustrates, there could exist better matches further

down the parameter list.

Consider a game physics engine collision simulation. Imagine that 16.2

is a func that handles collisions for some general case; that 16.1 is a func

that handles collisions between some object, and an object that is destruc-

tible. Using lexicographical pruning, the general case would win. If the
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16 LET-NAME LOOKUP AND PRUNING

least derivation-distance argument wins, then we would choose the more

specific func to handle collision with destructible object.

In a real world scenario - at least on classical scales - interactions be-

tween objects are commutative. A ball colliding with a wall of bricks (a

common demonstration of physics simulations) should behave the same

way as a wall of bricks colliding with a ball. Hence, TONAL uses the

least derivation-distance to determine the best multiple-dispatch. This

can help avoid requiring different permutations of arguments just to force

some kind of commutative behaviour.

The least derivation-distance criteria, in a multiple-dispatch context,

implies that virtual parameters are not privileged by any order. A pro-

grammer has the option to write a dispatching-func as a subdominant,

so it wouldn’t make sense prioritize any virtual argument. The implicit

@object parameter does not subsume the least derivation-distance crite-

ria so that object-enclosed funcs can be used in subdominant syntax and

behave exactly as other subdominant dispatching-funcs.

Common uses of multiple-dispatch will not need the least derivation-

distance because most problems involving virtual objects are defined in

terms of the most-derived types anyway. The least derivation-distance

matching is there to provide a memorable default behaviour for the in-

between cases.

Between 16.3 on the preceding page and 16.4 on the facing page, both

funcs have the least derivation-distance of 1. In case of a tie, lexicograph-

ical ranking finally comes into play. 16.4 on the preceding page wins the

match because it has one fewer argument with a least derivation-distance

of 1.

TONAL does not let a match failure in future-tense to fail silently. Multiple-

dispatch is a form of pattern-matching; TONAL follows other languages in

making pattern-matching complete, so that no options are forgotten.
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Part IV

Structure
Parentheses are omitted for clarity where the grammar rule’s name is

prefixed by one of the scale degrees. For submediant scale degree tonics,

assume an extra pair of parenthesis.

In some syntactic contexts, not all tonics of a scale degree are allowed.

In order to simplify the grammar diagrams, general scale degree names

are used, but with a special syntax to denote subsets and set differences.

The organization of ideas creates the structure of a program. The struc-

ture of the program defines how names are searched.

In all subtonics, the first subject must not be an atom that is any of the

keyverbs. Even though the notion of the subtonic scale degree prevents

syntactic ambiguity - the AM will never treat the first subject of a subtonic

as a keyverb - nevertheless it will be onerous for tool writers if it were al-

lowed, who would much prefer to be able to do a quick, context-ignorable,

scan for keyverbs.

Figure 16.16: Common elements railroad diagrams.
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A new name is always introduced in some implied context, providing

the stem, so only the leaf of an atom is permitted. The name is not already

bound to an object, until a value or tensah is constructed for it, or a subject

to a tonic is an argument to a tensah parameter. Parameter names may

be preceded by an ellipsis to signify variadic arguments.

A name that’s already bound to an object can be specified with as long

a branch as necessary to find it.

A clef marks the beginning of a section in a supertonic where an un-

limited number of tonics is supplied as a subject.

Included files are referenced using the standard URI for ultimate porta-

bility. It also signals, from the start, of the intent of the language to be able

to be stored across networks, instead of added as an afterthought. Such

networked storage may include package managers.
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Figure 16.17: Common Tensah elements railroad diagrams.
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Named parameters must not be one of the keyverbs because of the

subtonic keyverb rule.

Named parameters without a type are fully generic parameters, ac-

cepting of values of any type and pre-past-tense.
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16.1 Submediant Forms

Unnamed parameters, like parameter type values, serve as present-

tense overload pruning, so must be provided as present-tense values. Such

values cannot be provided programmatically - ie tonic - because there

would otherwise be no way of differentiating between the syntax of a

named parameter, and a tonic providing an unnamed parameter value.

Parameter types provided programmatically does not allow TOWEL

transfers to avoid confusing, non-obvious, state changes in the meaning

of a program.

Defaulted parameters, as specified by a let-submediant, also serve to

specify the type of the parameter.

Type parameters must be fulfilled by arguments that evaluate in the

present-tense.

Virtual parameters for types can simplify programs by their relaxed

overload-pruning rules. In regular overload-pruning, multiple matches

for an argument trips the ambiguity condition; requiring explicit conver-

sions to disambiguate. For types that have dispatch semantics, virtual pa-

rameters can be used to trigger the dispatch pruning rules instead which

elide explicit conversions.

16.1 Submediant Forms

The verb position is the command to be evaluated. Certain supertonics in

the verb position are like anonymous “verbs” to be evaluated.

Submediants are semantically equivalent to a local func that is im-

mediately evaluated. The local, immediate, evaluation - and func-ness

- places simplifications and restrictions on name-search and control flow

for ergonomic and correctness reasons.

Submediants don’t live beyond their immediate evaluation, so their

TOWEL cannot be transferred. They cannot be given a let-name and re-

used later. Let-names from the encloser can therefore be used without

needing to be grabbed since there is no danger of dangling accesses that

127



16.1 Submediant Forms

is usually associated with closures.

Resuming supertonics are not allowed in submediants because they

don’t live beyond their immediate evaluation, and so don’t have any state

than can be resumed. It also reduces misreading the encloser as being

resumable.

Submediants can, and must, explicitly evaluate to some value. Like

ternary operators, or expression-oriented languages in general, subme-

diants are used to produce a value without the distraction of control-flow

structures. Jumps must stay within the submediant, unless it is a tripped

condition that is not trapped by the submediant.

Verbless submediants are a further simplification of the func-submediant.

The func verb and the clef can be omitted. eval-supertonic belongs the

encloser. The verbless submediant itself does not evaluate to any value,

just like any regular control-flow supertonic. The verbless submediant is

used to introduce a new TOWEL environment, like braces are used in C++

to create a new scope in which objects created within are cleaned up at

the end of the scopes.
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17 SUPERTONIC FUNC

17 Supertonic Func

Figure 17.1: Major Supertonic Func railroad diagrams.
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TONAL treats all funcs as essentially the same. In languages like C++,

free/static member functions, non-static member functions, and captur-

ing lambdas are different types. It makes higher-order functions - those

that take functions as parameters; sometimes called operators in mathe-
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17 SUPERTONIC FUNC

matics - more complex to write generically and efficiently.

By treating funcs the same, higher-order functions automatically be-

come generic without having to account for differences between alterna-

tive machine representations for subroutines. Funcs become first-class

entities via this semantic, instead of relegating to some type-erasing func-

tion wrapper type. It is still necessary to write a wrapper type for funcs

for the purposes of dynamic storage.

With machine representation accounted-for generically, only the regu-

lar TOWEL concerns for objects separate object-dominant funcs, grabbing

funcs, and resumable funcs, from other funcs.

Resumable funcs cannot transfer TOWELs by default. Only when pa-

rameters and grabs have TOWEL can a resumable func’s TOWEL be trans-

ferred; such as to a task scheduler. Resumable funcs that do not have

TOWEL transferred may have their state-memory allocation completely

elided in present-tense.

A subset of major-supertonics can appear as the only bar in a func.

For exampe, funcs cannot contain just a grab-supertonic because there is

no reason to grab let-names and then do nothing. A single give-supertonic

may as well just be an eval-supertonic instead. A goto-supertonic wouldn’t

do anything on its own. Any of the TOWEL supertonics wouldn’t do any-

thing on their own either. On the other hand, hypertonics must be the only

tonics in a func if they appear in a func to avoid confusing with mixing

hypertonics and other tonics.

Type-enclosed funcs cannot grab, other than the implicitly grabbed

dominant-object. If a func must grab, it must be the first supertonic. Un-

like in languages like C++ that has the lambda capture specification at the

very beginning, TONAL takes the view that the parameters of a func are

visually more important than grabs. Grabs are implementation details of

a specific func. TOWEL rules prevent grabs from dangling binds, so it’s

not as important as in C++ to be able to see reference captures.
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17 SUPERTONIC FUNC 17.1 Major Supertonic Push-In

The verbless func-submediant can only appear as a bar.

17.1 Major Supertonic Push-In

Figure 17.2: Major Supertonic Push-In railroad diagrams.
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The let-name that the replacement value is being pushed-into must

have its object’s TOWEL, otherwise it trips an unatonable condition.

This supertonic triggers copy-construction if the replacement value is

not pulled-in. The copy-construction is evaluated with a valid @object.

If the replacement value is pulled-in, then copying may be elided, and

it may be constructed in-place.

If the let-name’s object has not been read-from between its construc-

tion and the push-in, the original construction and intervening writes

may be elided. Special note must be taken of writes that actually reads

the object first, and thus cannot be elided.

If the replacement value is of a different type to the let-name, but the

underlying representation of the replacement value is the same, or the

replacement value’s type has relaying, then it triggers the relay.
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17.2 Major Supertonic Pull-In 17 SUPERTONIC FUNC

17.2 Major Supertonic Pull-In

Figure 17.3: Major Supertonic Pull-In railroad diagram.
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If the let-name has the object’s TOWEL, then the pull-in has no effect.

If the let-name doesn’t have the object’s TOWEL, then copy-construction

is triggered.

One possible optimization that is enabled by this is lazy construction.

If the pulled-in object hasn’t been read from, then the object may be con-

structed at the pull-in site, rather than where the func is being evaluated.

The AM can track the TOWEL cascading through the chain of func evalu-

ations, and elide all writes until the first read. This is helpful in situations

like storing an object in some data-structure. The data-structure may have

some intermediate actions to perform - such as allocating memory - be-

fore storing the object in its ultimate destination. The AM can procrasti-

nate constructing the object until it is stored in its ultimate destination,

instead of constructing and then transferring TOWEL.

17.3 Major Supertonic Push-Out

Figure 17.4: Major Supertonic Push-Out railroad diagram.

MajorSupertonicPushOut

push-out BoundName

a

a

Pushing-out an object that is not pulled-in, or already pushed-out, has

no effect.
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17 SUPERTONIC FUNC 17.4 Supertonic Include

The object being pushed out can still be read after. Each read prolongs

the life of the object by postponing eager destruction.

If the TOWEL roundtrip was activated as a result of the push-out, it

is also deactivated after the completion of the roundtrip. The TOWEL

roundtrip may be reactivated with another pull-in/push-out transfer.

17.4 Supertonic Include

Figure 17.5: Major Supertonic Include railroad diagram.
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The major tonic is only used for importing symbols from other source

files. No evaluation to a value occurs.

The symbols that are imported are idempotent. All includes of the

same file anywhere in a program is only imported once. Included files

are tracked and compared by their canonical absolute paths, but without

following links, for portability, ease-of-implementation, and performance

reasons.
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17.5 Minor Form

Figure 17.6: Minor Supertonic Func railroad diagram.
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Creates a func on the fly, instead of as an enclosed object of a type. It

is the equivalent to lambda functions in languages like C++.

17.6 Submediant Form

Figure 17.7: Submediant Func railroad diagram.
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Verbless submediant funcs do not evaluate to a value and so can only

be used like a major tonic.

All names are grabbed by default, since it is intended to be the same as

a compound-statement in languages like C++. This is safe, since the func

is not transferrable, and not even bound as a let-name. Submediant funcs

are really just syntatic sugar, but classified as a func for the purposes of

categorization in the scale-degree scheme.
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18 Supertonic Type

Figure 18.1: Major Supertonic Type railroad diagrams.
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The parameters and base types subtonics and the Keys can come from

an include file instead of having to be written inline. This kind of project

organization can help with shorter processing times and IDEs.
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18 SUPERTONIC TYPE

The virtual access of a base has a different meaning in the base subtonic

compared to its use in the Keys. In this context, it refers to virtual inheri-

tance, and is the way to solve the diamond inheritance problem.

TONAL even permits derivation from literals. It is the logical exten-

sion of inheritance of types where the value of the base object is known

in present-tense. Such base objects are not modifiable, even in present-

tense, to avoid over-complicating the language with changing type bases

in present-tense.

Types that derive from an archetype must have a size, and may be pre-

served into future-tense, unlike archetypes, but the archetype base object

is never preserved, so its size remains 0. Archetype values must always be

in present-tense, but types derived from archetypes can straddle between

future-tense and present-tense, therefore archetype base objects does not

require a present-tense value. The AM keeps track of this.

Types derived from mediants are themselves mediants, and subject to

the same limitations as mediants.
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18 SUPERTONIC TYPE

Figure 18.2: Major Supertonic Type railroad diagrams (continued).
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Only let-, func-, type-, and access control major supertonics can be a

key.

A base-object may have a func that is a good default interface that the

derived-object would want to advertize as its own, such as a hook from the

base-object. As a shorter alternative to writing a wrapper in the derived-

type that simply calls the base-object, the let-supertonic can be used to

hoist the func. This does not result in increased size of the type.

18.0.1 Hooks

Hooks are not resumable, so must not attempt to evaluate the give- and

wait-supertonics. Hooks cannot grab let-names.

Only construction hooks can be treated as a readonly let-name for an

object of func type. Such objects behave as a factory-func for that type.

This is to aid the simplicity of generic code that takes factory-funcs.
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18 SUPERTONIC TYPE

Figure 18.3: Conversion hook.
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Conversion hooks are triggered when an object of one type is con-

structed from an existing object of another type, and there are no appro-

priate construction hooks that does the same.

Conversion hooks must accept just one argument, which is the type of

the desired type. Any other number or type of argument trips an unaton-

able condition.

No other let-name is allowed the @ character, but the conversion hook

can be overloaded for multiple desired types. There can be no generic

catch-all conversion hook, because conversions can cause issues, and so

must be carefully considered.

Conversion hooks are typically not necessary for converting an object

to one of its base objects. For overload-pruning, the explicit construc-

tion of a base-type from an object is merely for disambiguation and does

not involve the creation of an actual object, so no conversion needs to be

done.

Conversion to a base object may prevent some optimizations in the

memory layout of the underlying bits. Some AM implementations may be

able to flatten out an object’s hierarchical memory to eliminate padding,

but if conversion to base type is forced, then that prevents it being flat-

tened, as it must maintain its own separate internal layout to allow for

extraction as its own object.

Conversions to archetypes is the mechanism by which the AM differ-

entiates between present-tense and future-tense values. All archetypes

must have present-tense values, but types derived from archetypes can
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18 SUPERTONIC TYPE

be future-tense. To use an object of a archetype-derived type in present-

tense, it must be capable of being converted into one of the archetypes. A

conversion hook should trip a certain atonable condition to signify to the

AM that an object is future-tense. Types with multiple enclosed objects

could convert to a List of present-tense values.

Unpacking an object is done by converting an object to a List, and un-

packing that List into let-names.

Types that can be constructed from an archetype that it was converted

to may be used by the AM to memo-ize computations in order to speed up

a present-tense processing session, perhaps even across time-separated

sessions such as incremental builds.

Figure 18.4: Verb hook.
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An object of a type with a verb hook can be used in the verb position

of a tonic. This is equivalent to function-objects in languages like C++.

Lambda funcs, ie funcs with grabs, are great for quickly encapsulating

localized functionality, but if they get too complex, they should become

their own type. This enables simplifications, such as splitting a func into

overloads, rather than crammed into one func.
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Figure 18.5: Redirection hook.
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Branch redirection would open up a can of worms, as it would allow

the possibility of bypassing TONAL’s fundamental atom semantic, where

each node in the atom refers to an enclosed object in the prior node. Pro-

grammers would work under such assumptions, and breaking such as-

sumptions would be easily overlooked. The wildcard can thus only match

a name that is a single node.

The characters (, ), “, and ′, are not allowed in atoms, so it would be

impossible for the wildcard to contain those characters. Specifying those

characters in the wildcard trips an unatonable condition. The strings @@

and @ can be used in the wildcard for zero-or-more and single-character

matches, respectively. They are equivalent to the ∗ and ? wildcard char-

acters in languages like Bash shell. TONAL cannot use those characters

for wildcards as they are valid in names.

The Tensah enclosed @jective @name contains the result of the wild-

card match in total. There are no capturing matches as there are in regex.

Present-tense string manipulation functions should be used to interpret

the matched name if such trickiness is needed. The @name qtom will

never be empty, just like how no atom-node can be zero characters long.

If an object is used in the verb position, and there is no verb-hook, then

that trips an unatonable condition, rather than implicitly, and confus-
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18 SUPERTONIC TYPE

ingly, calling a redirection-hook.

The parameters are entirely up to the hook implementation. There are

no special AM parameters for redirection hooks.

Hooks, especially redirection-hooks, are never redirected. This pre-

vents almost untraceable infinite recursion, and discourages overly com-

plicated redirection schemes.

Redirection hooks cannot be inherited. This solves the issue of redi-

rection if multiple types with redirection hooks are inherited from. This

simplifies the implementation of wrapper types (the main use case for

redirection hooks), especially in the case of wrappers of wrappers. The

programmer has complete control of how redirections are forwarded, in-

stead of fighting TONAL rules.

Figure 18.6: Construction hooks.
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All types have an identity, copy, and default construction hook. They

are initially generated by the AM. If the programmer creates funcs with

the exact signature as those hooks, then they replace the generated hooks.
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Sometimes programmers just wants to use the AM-generated versions of

those hooks, but doing something extra after construction. They don’t

want to have to re-implement the natural versions of those constructions.

In the identity, copy, and default construction hook, evaluating the @type

@-jective with their respective arguments will use the respective AM-generated

hook.

Construction hooks can delegate to other construction hooks, but not

recursively, whether direct or indirect.

TONAL does not bifurcate construction and assignment in the way lan-

guages like C++ do. There does need to be accommodation for potential

optimizations that takes advantages of the difference between construct-

ing an entirely new object, as opposed to replacing an existing object.

In the copy-construction hook, the @object is invalid in present-tense,

throughout the entire construction, when constructing a new object. The

@object is valid in present-tense if replacing an existing object. Even if

the @object is invalid in copy-construction, its enclosed objects can be

touched once they are constructed.

The @object can only be invalid in constructions of new objects. In

every other enclosed func, the @object is always valid in present-tense

and beyond.

Types that are solely-derived from one archetype have AM-generated

identity construction hooks that creates a future-tense value of the de-

rived type. The type must provide its own default-construction hook that

takes a present-tense value to construct its archetype base-object in order

to construct a present-tense value.

Figure 18.7: Transpose construction hook.
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There sometimes can be performance gains for objects stored in ar-

rays if there is an array for each enclosed object, instead of one array for

whole objects. This is known as the structure-of-arrays, as compared to

arrays-of-structures. Some benefits include tighter packing of data. Some

access patterns, such as the same enclosed objects of separate objects are

compared in some way, is better if those members are all in their own ar-

ray. Another use is the architecture know as Entity-Component-System.

An Entity could be a logical object, with its enclosed objects as Compo-

nents spread out over arrays.

The transpose-construction happens in the same order as ordinary

construction, but the AM pauses the construction after each enclosed ob-

ject. The new constructed enclosed object is then copied into the rest of

the array. In special cases, this could be a highly optimized byte-wise copy,

instead of copy-construction of the enclosed object.

Figure 18.8: Destruction hook.
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All types have a destruction hook. It is intially generated by the AM,

but a programmer can replace it. The same destruction hook applies

for objects created using the transpose-construction hook with the same-

enclosed-object-at-the-same-time semantic.

Unlike in languages like C++, objects cannot be viewed after a destruc-

tion hook runs - such as the object being pushed-in to another func - which

means destruction hooks don’t have to clear the values of objects, sav-

ing some performance. Only objects with sensitive data, or some book-
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keeping cleanup func, need extra attention in destruction.

Figure 18.9: Relaying hook.
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The func-name syntax is the same as destruction because relay is se-

mantically like a destruction of the old object and replaced with a new

object of a different type.

For relay type-pairs that are derived from one, and the same, base-

type without additional enclosed objects and/or custom construction or

destruction hooks, in the derived-type - called a persona-pair, the AM gen-

erates a relaying hook, which can then be replaced by a custom hook with

the same signature.

For relay type-pairs that aren’t a persona-pair, but have the same type,

order, and alignments of enclosed objects, they are also treated as a pseudo-

persona-pair. The AM does not generate a hook, since the type-pair’s lay-

out could be coincidental.

For relay type-pairs that aren’t persona-pairs and pseudo-persona-pairs,

but are of the same size - called a silhoutte-pair, generally should not be

relayed. Some machine specific operations may require treating an ob-

ject of one type as a sequence of bits of some other type. Relay hooks for

silhouette-pairs is tantamount to low-level type-casting that you would

find in languages like C.

144



18 SUPERTONIC TYPE

Unlike C, silhouette-pairs are TONAL’s way of short-circuiting the pro-

cess of formalizing machine semantics into its type-system, rather than

simply of way of working around the type-system. As is the TONAL style,

it is much prefered to capture a machine-semantic into a TONAL concept

as soon as possible, and then exploit to full power of TONAL to encode re-

lated behaviours as part of a type; as opposed to trying to do everything

in the AM-plementation language.

Custom relaying hooks can only touch the existing object before the

relayed object. As soon as the custom hook touches the relayed-object, the

expiring-object is considered destroyed, and touching the expiring-object

will trip an unatonable condition.

For custom hooks for persona-pairs and pseudo-persona-pairs, in gen-

eral, no data movement is necessary. Such a custom hook is useful simply

for asserting that the relaying of the expiring-type to the relayed-type does

not break invariants. Once the relayed-object is touched, or the custom

hook has finished evaluation without touching the relayed object, then

the AM considers the relaying to be complete.

Only custom hooks for silhouette-pairs are allowed to be implemented

with a hypertonic in order to do implementation-specific things like hard-

ware access.

For persona-pairs or pseudo-persona-pairs that have incompatible in-

variants; silhouette-pairs; and dissimilar pairs; in general, programmers

should not use relay-hooks unless necessary. Construction and conver-

sion hooks to achieve the same effect is preferred. If, after considera-

tion, it is decided that relay-hooks are still necessary, then the relay-hook

should adopt the idiom of moving whatever enclosed objects are needed

into temporaries, then applying them to the new object.

Corollary 1. Funcs in the derived type, not to mention virtual funcs, must

not be called while constructing the base type, because the derived type

hasn’t been constructed yet. Some type designs rely on the base type being
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able to orchestrate some setup, of which the derived type provides setup

customizations. This is typically solved, in languages like C++, by having

a separate setup function that has to be manually called, which can be

error-prone. Alternatives like the Curiously Recurring Template Pattern are

clunky, non-obvious, and hard to teach.

In languages like Java, virtual methods can be called by the superclass,

which relies on the subclass being implemented correctly, which can be

error-prone.

TONAL solves this dilemma by allowing both limited derived-type funcs

to be evaled in the base construction, and for the programmer to nominate

a func as the separate post-construction setup function.

Any func from the derived type can be evaled in base construction as

long as it doesn’t touch any enclosed object. Such funcs are mainly factories

designed to be customized by derived types.

To nominate a func as the setup function, it must be the last func evaled

in a construction, and it must explicitly use @derived as the dominant ob-

ject for the func. The nominated func’s evaluation is postponed until the

most-derived type is fully constructed. Such a func must only be called once

during the entire construction process, but each construction may evaluate

one such func, even if constructions are evaluated by other constructions.

In the case of nominated virtual funcs, the most-derived override is the only

one that’s evaluated. The order in which the total set of nominated funcs

is evaluated in the construction order. Nominated funcs can touch any en-

closed object.

Destruction has the same restrictions, but inverted. Some types needs to

be cleaned up from derived-to-base before being destroyed, and at each de-

struction, parts of the object will have already been destroyed. Any derived-

type func that is evaluated in destruction must not touch any enclosed ob-

ject. The nominated func must be the first func evaled in each destruction.

Each nominated func must only be evaled once. The order in which the total
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set of nominated funcs is evaluated in destruction order, immediately before

destruction. Nominated funcs can touch any enclosed object.

If one nominated func, in construction or destruction scenarios, are called

from another nominated func, then it would also trip an unatonable condi-

tion if it is called more than once in the entire construction or destruction

phase.

Relay-hooks employ the same pre-destruction and post-construction func

nomination scheme for the expiring-type and relayed-type, respectively. The

pre-destruction nominated func is the @derived-dominant func as the first

tonic, and the post-construction nominated func is the @derived-dominant

func as the last tonic.

18.0.2 Access control

The classic access modifiers - used to guard against improper use and ac-

cidental coupling - are public, private, and protected. Languages like Java

and C# have even more, for packages and other levels of organization.

Other keywords in other languages that also serve as access modifiers of

sorts are abstract, default, extern, fileprivate, final, friend, inline, internal,

open, override, readonly, sealed, static, thread_local, using, virtual.

Many of these keywords are strictly not categorized as access control

modifiers in those languages. TONAL takes the point of view that the no-

tion of access is more extensive than just access to names; names are just

one of the observable structures of the AM. The other main observable

structure of the AM is the dispatch. Being observable means access to

them must be disciplined and restricted.

The classic access modifiers can at times be too broad, and at other

times be too narrow, requiring workarounds like friend access, or access

token objects, or very intricate rules with intricate implications that is

easy for computers to check but impossible for programmers to remem-

ber.
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Access-control in programming languages are not for security, but the

same principles from access-control-lists can be re-used for clarity. Access-

control is simple: what we are controlling access to, what access capabil-

ities are allowed, and what is allowed to access. They should be specified

as explicitly as possible, while avoiding detail bamboozlement.

Name access-control uses a stack-like database structure. Every type

has its own access-control database. Every access-control database for

a type starts empty from the beginning of the base subtonic. Modifying

the access-control database can utilize the stack-like semantics to avoid

repetition, while still being reasonably simply to reason about whatever

has access to whatever name, with whatever capability.

The stacked approach also makes it easier to group enclosed objects

by permitted access, which often coincides with grouping by related func-

tionalities.

Dispatch access-control follows the Java-like scheme of a single-use

supertonic that only applies to the subsequent enclosed Tensah. Unlike

name access-control, it is much more important to prevent accidental

granting of dispatch access.

Name-search and pruning are performed before access-control check-

ing. This prevents access-control from being intercepted with a new over-

load with more capabilities.
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18.1 Supertonic Readers

Figure 18.10: Supertonic Readers railroad diagrams.
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The readers-supertonic without subjects resets the access-control to its

initial state. The initial state only allows access to names from within ton-

ics enclosed by the type. This is exactly equivalent to C++ classes, where
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everything is private by default. Additionally, in the initial state, names

can only be accessed implicitly or explicitly through the @object. This is

exactly equivalent to C++ functions and data being non-static members of

a class.

It is a bit weird that the default class membership in C++ is differen-

tiated from static membership by the term “non-static”, when they are

more common than static members. In TONAL, it is termed @object-accessed

name/enclosed object, but can be assumed if omitted in exposition.

The current state of access-control is applied to all names following

a readers-supertonic until the next readers-supertonic modifies the state.

The current state may be a useful configuration for a subset of names, so

it can be pushed onto the logical stack of the access-control database to

use again later. The pushed-state may be named for documentation and

targetted popping.

Popping an empty stack trips an unatonable condition.

Popping to a named stack-entry pops all intervening states until the

named stack-entry is reached. If the name does not exist, it trips an una-

tonable condition.

Readers can be inserted or deleted from the current access-control

state. Readers are somewhat the equivalent of friends in C++, in that you

specifically nominate what is permitted access. In C++, friends of a class

can access any member in a class, regardless of access-control. However

full access is almost never necessary, and opens the door for unchecked,

incorrect, usage. Readers can only access the names for which they were

permitted access. If a reader is both inserted and deleted, it trips an una-

tonable condition.

There are special shortcuts to specify a large number of readers that

are familiar to other languages.

@object has access to all names by default. The object dominant of an

atom is the @object. Names can be accessed via an @object, either explic-
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itly or implicitly, with the @object having the TOWEL of all the names.

If a func is evaluated via an @object (implicitly or explicitly), then name

access from within the func is also through the @object, unless explic-

itly stated otherwise. This is the equivalent of non-static members in lan-

guages like C++.

@type has no access to all names by default. The type dominant of

an atom is the @type. If @type is given access, this is the equivalent of

static members in languages like C++. C++ allows static members to be

accessed via an object’s pointer, but always refers to the static member.

Unlike languages like C++, both the @object and the @type can enclose

objects with the same name, and they view separate objects. This is to aid

generic programming. TONAL types are present-tense singleton objects,

so there is no reason why types cannot be passed into generic funcs and

have algorithms that work on objects also work on types.

TONAL does not have a specific feature that directly mirrors C++’s function-

scope static variables. The same effect can be achieved by giving reader-

and/or-writer access to only @type, and the enclosed func that the en-

closed object is intended for. It is slightly more cumbersome, but it does

have the nice property that the enclosed object will be initialized when

the enclosing type is, rather than the random time whenever the func is

evaluated.

For names with both @object and @type access, type dominants can-

not access names through an @object, but object dominants must only

access names through the @type explicitly.

Access for derived types is granted through @derived readers. It is the

equivalent of protected access, in languages like C++. Permitting access

only to derived types may not be as high-coupling as permitting every-

thing access, but it is still notoriously dependency-inducing. It would still

be better to name types and funcs directly to give access to.

@object and @type access is the equivalent of private access if pro-
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vided just on their own. To give general access beyond select types, an

access-expression can be given, which is just a qtom wildcard. TONAL

tries to reserve as few characters as possible, which means there is lim-

ited option for wildcards in atoms. Qtoms have no such restriction. Since

the @ character is forbidden in non-@jective names, and parentheses are

reserved for tonic delimiters, they are the natural choice for wildcard

characters. @, for single character wildcard. @@, for any-length charac-

ters non-greedy wildcard. Parentheses, for any-length limbs non-greedy

wildcard. The wildcard expression is matched starting at the complete

rooted branch of a name.

18.2 Supertonic Writers

Figure 18.11: Supertonic Writers railroad diagram.
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All writers have reader access. If a writer is deleted from the current

state of the access database, and was also never added to the readers in

the current state, then the implicit reader access is also revoked.

Writers, applied to funcs, means the func can be evaluated with a

TOWEL-owning dominant. TOWEL transfer rules still apply, so the func

will still have to pull-in its @object before it can modify anything.

Deleting writer access to a let-name is the equivalent of const data

members in languages like C++.
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18.3 Supertonic Virtual

Figure 18.12: Major Supertonic Virtual railroad diagram.
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Hooks cannot be given dispatch access, or will trip an unatonable con-

dition.

Access to a dispatch is not stateful, so the virtual-supertonic must be

followed immediately by a, and only applicable to that, Tensah. This pre-

vents accidental granting of access to the dispatch of more Tensahs than

expected.

The applicable func is inserted into the dispatch-access database to en-

able it to be overriden by funcs in derived types, at any level of derivation.

This is equivalent to the virtual keyword in languages like C++. If it would

have the affect of overriding a virtual func in the base type, then it trips

an unatonable condition.

The applicable func can be deleted from the dispatch-access to prevent

being overriden by funcs in derived types. This is equivalent to the final

specifier of member functions in languages like C++.

The applicable func attempts to override the base type’s virtual func,

if neither inserted nor deleted. If there is no func in the base type that

is overridden by the applicable func, this trips an unatonable condition.

This is equivalent to the override specifier in languages like C++.

A derived type’s access to override a virtual func is not affected by

reader or writer access. It is in fact recommended to keep virtual funcs
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only and solely @object-accessible. This prevents derived classes from

evaluating the base virtual func directly, likely outside of the constraints

of the base type. The base type typically provides virtual funcs as cus-

tomization hooks that it will evaluate in some precisely orchestrated man-

ner. The Template-Method Pattern is one such example, and one could

argue that the Non-Virtual-Interface Pattern is a special case.

There are design patterns (some would argue anti-pattern) that re-

quires overriding funcs to understand why and when to call the base

type’s virtual func, but these typically have very narrow type hierarchies

intended only for highly specific implementation needs.

Destruction is automatically handled with dispatching if a type has any

virtual funcs, so the virtual-supertonic is not needed for destructors, un-

less the destruction is the only virtual func. If a destruction is deleted

from virtual-access, it only prevents derived-types from providing over-

rides. The implicit destruction of the derived-type is still virtual.

All hooks, aside from destruction hooks, cannot be tagged virtual, oth-

erwise it trips an unatonable condition.

The applicable base object, whether it be a Tensah or a present-tense

value, is neither inserted nor deleted from dispatch access. Rather, it is to

signify that the base object participates in diamond inheritance.

All types are dispatch-acessible by default, in the sense that it is al-

ways possible to derive from a type with, or to impart, dispatch ability,

so inserting into dispatch-access is an unatonable condition. If deleted

from dispatch-access, then the type can not be derived from. This applies

whether or not the type has any virtual funcs defined. This is the equiva-

lent of the class/struct final specifier in languages like C++.
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18.4 Supertonic Push-Out

Figure 18.13: Major Supertonic Push-Out railroad diagrams (key).
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The immediately following let-name’s TOWEL is not tied to the en-

closed object, unlike normal let-names in types. This also disables any

TOWEL transfers for any object of enclosing-type, tripping an unatonable

condition if attempted. The let-name must be constructed with a value

provided outside construction, otherwise it trips an unatonable condi-

tion. This is the equivalent of reference-qualified data members in lan-

guages like C++.

If the provided value was pulled-out, then any TOWEL round-trip on

the enclosed let-name occurs after the destruction of the enclosing object.

Such usage patterns are useful for self-contained, slightly longer-lived,

operations on an object, such as builders, otherwise known as fluent-

interfaces.

18.5 Supertonic Include

Figure 18.14: Major Supertonic Include railroad diagram.
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This section intentionally left to this one sentence.
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18.6 Minor Form

Figure 18.15: Minor Supertonic Type railroad diagram.
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Some generic algorithms may take a type argument, but the type may

not have any usage outside of a func, so create a type inline if it otherwise

would be hard to justify creating a fully-fledged type.

18.7 Submediant Form

Figure 18.16: Submediant Type railroad diagram.
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Create an object of a nameless type.

Not much point for access control supertonics, but it’s harmless to do

so, so it is allowed, to simplify AM implementation.

Possible to inspect @type object.

Like Java.
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19 Supertonic Let

Figure 19.1: Major Supertonic Let railroad diagrams.
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Names introduced by the let-supertonic can bind to either an object

constructed as its subject, or to an already existing let-name, including

parameter names. Of the latter kind, the let-name does not have the ob-

157



19.1 Minor Supertonic Include 19 SUPERTONIC LET

ject’s TOWEL, much like with parameter names. The former and latter

kind are referred to as pull-in binding and push-out binding, respectively.

Pull-in binding has the object’s TOWEL, where as push-out binding needs

to be pulled-in - creating a copy - just as with parameters, when desiring

an object that can be modified.

An object can have many push-out bound let-names, but only one pull-

in bound let-name. This prevents aliasing, and allows for certain memory

optimizations, similar to restricted pointers in languages like C. Naturally,

it also prevents many logic errors that normally arise when reading and

writing to objects using different name aliases.

19.1 Minor Supertonic Include

Figure 19.2: Minor Supertonic Include railroad diagram.
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Programs consists not just of instructions - commands - but also of

data. Data can become part of the AM process so that TONAL programs

can be driven in the present-tense.

TONAL only understands a limited number of data types: raw binary,

raw text, and TLDR. Raw binary is interpreted as a List of Longs - each

long representing an octet. Raw text is interpreted as a Qtom. TLDR is

interpreted as an object of unspecified type. The data cannot be modified

and, being present-tense, will not be preserved into the final program.
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The TONAL program derives meaning from the data, so the data lives on

in the structure of a TONAL program.

One use of present-tense data is for digital assets. The AM is thus made

aware of digital assets as part of the program itself, potentially saving the

program from having to load and reparse the data every time the program

runs.

Structured present-tense text data can be used as configuration. This

is not your average configuration of program options. Entire structured

documents can be embedded in a program.

Raw text data is completely free-form. Combined with present-tense

parsing, TONAL programs can be augmented with domain-specific lan-

guages with wildly different syntax, all outside of TONAL. As with all lan-

guages, no single syntax can hope to provide safety, terseness, and ex-

pressiveness for all types of problem domain. For example, declarative

languages specify relationships, while imperative languages (like TONAL)

specify algorithms. Imperative code can sometimes obscure relationships

between entities in the quest for performance, so having a declarative

DSL can help the programmer see an architecture from multiple facets.

19.2 Mediant Push-In

Figure 19.3: Mediant Push-In railroad diagram.
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An object can be unpacked into new let-names and/or existing let-names.

Unpacking into existing let-names requires pushing-in, as is the case with

regular push-in. The mediant push-in makes it easier to mix the targets
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of the unpack.

Nested unpacking is not directly supported by TONAL, to keep the er-

gonomics of names maintainable. If unpacking of objects multiple levels

of enclosure is desired, then it is up to the programmer to explicitly do it

for each object that is unpacked. TOWEL rules ensures that no frivolous

copies are made.

19.3 Submediant Form

Figure 19.4: Submediant Let railroad diagrams.
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Only used for default parameters for Tensahs and the range sequence

in loops. In both cases, the name is supplied outside of (immediately pre-

ceding) this tonic.

The name is bound as late as possible, which means when the eval-

uation happens. Default parameters are created with the values at the

location of the Tensah’s evaluation, as opposed to the construction of its

enclosing object.
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20 Minor Supertonic “()” (the list specifier)

Figure 20.1: List Specifier railroad diagrams.
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The atom “list” is a very useful generic word, so TONAL avoids using

that atom as a verb. The clef is obviously a list, so that is used as the verb

to construct a list.

TONAL lists do not act as a container, like arrays or vectors or lists in

many other languages. TONAL lists are more like a way of being able to

manipulate syntactical sequences of tonics, names, and literals. If a list

subject is pushed-in, for example, it is not pushed into the list, but rather

pushed-into whatever other tonic that list is used by. Names in lists are

searched-for in the immediate scope to avoid accidently picking up the

name that would be found starting from where the list ends up.
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21 Supertonic Grab

Figure 21.1: Major Supertonic Grab railroad diagrams.
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Grabbing names from outside into a Tensah is a great way of com-

posing data and customizing behaviour that can be passed into generic

interfaces. It is a fast way of creating cheap, stateful, objects.

Grabs are just like parameters when it comes to TOWEL rules. Grabs

must be pulled-in to make a local copy. Grabs are candidates for TOWEL

roundtrips.

Grabs that aren’t pulled-in, or are roundtripping, render the grabbing

Tensah TOWEL-untransferrable. They themselves cannot be pulled-in,

unless also pushed-out and triggering the roundtrip of the Tensah.

Grabbing the dominant @object or @type makes the name-search be-

have the same as a regular type-enclosed func. All dominant funcs im-

plicitly grab its @object. TONAL does not support the concept of partial-

objects, so Tensahs that grab the @object cannot transfer TOWEL, unless

it is a TOWEL roundtrip.

A grabbed @object need not take up memory in the AM (eg, a pointer)

if the grabbing Tensah is accessed via a dominant. Such an optimization

is possible if the grabbing object is enclosed by the @object’s type, as is

the case with enclosed funcs. Enclosed objects that grab the @object acts
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21 SUPERTONIC GRAB 21.1 Mediant Let

as proxies. These lighter-weight proxies make designing extended object-

systems, or meta-objects7, such as those found in Smalltalk or LISP CLOS,

much more resource efficient.

21.1 Mediant Let

Figure 21.2: Mediant Let railroad diagrams.
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Being able to grab a value that is constructed in the grab-supertonic it-

self is provided for convenience. It is equivalent to constructing an object,

and then pushing-in to the grabbing Tensah, but with the added benefit

that the name is only lexically valid inside the Tensah. The corresponding

feature in languages like C++ is the init-capture in lambdas.

7In the sense of observable message passing between object ports.
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Part V

Control Flow

22 Tonic

The most fundamental method for principled flow of control is the sub-

program. Many programming introductions start with choice and repeat,

but the subprogram should be considered the primary tool for program-

mers. Breaking down a large task into smaller ones, simplifies, and tight-

ens the focus of sections of code. In certain cases, such break-downs al-

lows a machine to perform each section concurrently.

Subprograms can be evaluated in such a way that no actual change in

the flow of a program actually happens, such as inlining. Subprograms in

this context still have value in tightening focus. In TONAL, some subpro-

grams can be evaled in present-tense and can be completely eliminated

so inlining can be made unnecessary.

22.1 Minor Supertonic Push-In

Figure 22.1: Minor Supertonic Push-In railroad diagram.
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All objects constructed by a minor tonic is implicitly pushed-in, be-

cause there isn’t a way to reference the object. In all other cases, objects

must be explicitly pushed-in. Objects must be pushed-in by let-name, to

avoid the complication of having to track the TOWEL of objects being

passed into other tonics and then passed back out.
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22 TONIC 22.2 Minor Supertonic Pull-Out

A pushed-in let-name is in past-tense immediately at the opening a

parenthesis of the enclosing major tonic. It prevents a let-name being

used in any other position in the enclosing major tonic and minor ton-

ics. This avoids any intricacies about whether a let-name can be used as

another subject prior to the push-in, and what happens in the receiving

tonic where multiple parameter names refer to the same object, but one

name has lost TOWEL. There can be such a rule, but for ergonomics, it’s

better left as a condition.

The tonic that the object is pushed-in to now has that object’s TOWEL.

22.2 Minor Supertonic Pull-Out

Figure 22.2: Minor Supertonic Pull-Out railroad diagram.
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Pull-out marks the let-name for a potential TOWEL round-trip. The re-

ceiving tonic may or may not utilize the round-trip, but it may not take the

object’s TOWEL. At most, it can take a copy of the object identified by the

let-name, and have the copy’s TOWEL, if the object’s type allows copies.

Whatever happens to the object inside the receiving tonic is invisible un-

less the TOWEL round-trip is complete.

The let-name being pulled-out must have the object’s TOWEL, other-

wise it trips an unatonable condition.

A pull-out minor supertonic can be considered to be implicitly pushed-

in for the duration of the enclosing major tonic. This means all subjects of

the same enclosing major tonic cannot view the same let-name, because

the let-name is considered to have lost its TOWEL due to being pushed-in.

TOWEL is restored after the major tonic has been evaluated.
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23 Supertonic Eval

Figure 23.1: Major Supertonic Eval railroad diagrams.
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The eval-supertonic defines what a func evaluates to. All funcs are

evaluated to some value. Sometimes a func just ends when there are no

more commands left to process. This implicitly evaluates to an empty

present-tense list. An eval-supertonic with no subject also evaluates to an

empty present-tense list. An eval-supertonic may evaluate to an explicitly

provided value.

A func can have zero, to many, eval supertonics. All eval supertonics

in a func must evaluate to the same type in the present-tense. This might

involve an explicit conversion to a base type. In such a case, if all the

derived types of all the possible evaluations are known, then it is possible

for the AM to reserve space in the present-tense that can hold the largest

of them.

A func can evaluate to a value at any point in its bars, in which event

the func is finished and no other commands after are evaluated. If there

are commands after an eval that never get evaluated in any circumstance,

that trips an unatonable condition.
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23 SUPERTONIC EVAL

A func may be resumable if it also evaluates a give-supertonic. The

eval-supertonic then finalizes the evaluation of a resumed func. All give

supertonics must also evaluate to the same type as all the eval supertonics.

A func can evaluate to multiple values at the same time if the eval-

supertonic subject is convertible to an archetype list of values.

Sometimes a func evaluates to present-tense values. The AM can opti-

mize further evaluations of the func in present-tense and bypass it com-

pletely if there is a one-to-one mapping from the func’s enclosing object

and arguments types and/or values.
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24 Supertonic If/Iff

Figure 24.1: Major Supertonic If railroad diagrams.
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Making decisions based on the state of the world is the mainstay of con-

trol flow. The predicate of an if -score tests that state for meeting certain

criteria and evaluates only the bars of the score that meets that criteria,

or the else-score if none of the criteria are met.

The predicate evaluates to some value that is convertible to a long

archetype value, where the value 0 means that the criteria is not met, and

any other value means the criteria is met. If the value is not convertible

to a long archetype value, then it trips an unatonable condition.
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24 SUPERTONIC IF/IFF

Every if -score is permitted a let supertonic; the object(s) to be cre-

ated is completely bound to the if supertonic’s evaluation. This avoids

objects being created solely for the purposes of the if supertonic to have

its TOWEL longer than necessary. A common case is the creation of an

object that holds the lock for a mutex that should only be held for the

shortest amount of time possible. The object’s TOWEL continues to the

end of the supertonic evaluation, so can be used in subsequent if -scores

(if the name isn’t shadowed by another).

The design of TONAL strips away the extra else if that other languages

have, since the S-expression syntax renders it unnecessary. Any ifatom

that appears as the top-level subject of the if supertonic is considered the

start of a new decision branch; and the else atom as considered the start

of the fallthrough decision branch. There is no ambiguity, as plain atoms

are not allowed in the bars.

The clef to introduce the bars of the score is not designed to be omitted

in the way that some languages allow omitting braces for single-statement

blocks. This is to aid visual scanning, as well as tools; and with automatic

delimiter matching in most IDEs, saving a tiny little bit of typing is no

longer a valid reason. Missing clefs trip an unatonable condition.

The iff variant of the supertonic requires that one branch must be

taken, its name being a reference to the logical qualifier if-and-only-if.

This can be used to force the complete check of ranges of criteria to ensure

that no gaps in logic exists. If the criteria-ranges are known in present-

tense, then an uncovered gap trips an unatonable condition.

In certain cases, the AM can optimize an if -supertonic to a jump-table.

This can mildly speed up some code.

TONAL does not have a switch or match statement as in other lan-

guages. The features of both - jump-tables, and forced gap coverage - are

accounted for by the if and iff supertonic.
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24.1 Submediant Form 25 SUPERTONIC LOOP

24.1 Submediant Form

Figure 24.2: Submediant If railroad diagram.
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Subsection intentionally left to this one sentence.

25 Supertonic Loop

Figure 25.1: Major Supertonic Loop railroad diagrams.
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Doing the same task over and over is the purview of machines. Re-
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25 SUPERTONIC LOOP

peated tasks complete when some state is reached. A common class of

task repetition is the application of some action(s) over a sequence of

things until the sequence is complete.

The loop-supertonic handles the general repetition of tasks, and the

common repetition over a sequence - called a range.

The range is specified with the same kind of let-submediant that is used

for defaulted func arguments. The range loop implicitly introduces a let-

name that views the current object in the range being looped over. TOWEL

rules means that if the object in the range itself has TOWEL, then it can

participate in a TOWEL round-trip. Otherwise, pulling-in then pushing-

out the implied let-name follows the usual rules for copying.

The range object must be convertible to a list archetype value. It may

be empty. If the value is not convertible to a list archetype value, then it

trips an unatonable condition.

The general loop has an optional let-supertonic and predicate that is

the same as an if -supertonic, but with an optional extra after-loop action

that can evaluate some state to update the loop’s completion status. The

predicate checks the loop’s completion status, stopping the loop if it eval-

uates to 0.

The after-loop action is evaluated after the bars. Then evaluation con-

tinues back at the predicate, followed by the bars, if the loop has not com-

pleted.

A loop may be unrolled for optimization. Loops may also be partially

unrolled if the objects in the range are of mixed type.
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25.1 Supertonic Stop

Figure 25.2: Major Supertonic Stop railroad diagrams.
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Loops may need to exit early. The stop-supertonic exits the immedi-

ately enclosing loop, if no subject is given. The after-loop action is not

evaluated if a loop is stopped.

Sometimes it is necessary to exit nested loops to any arbitrary level.

Looped tasks that support this can name the loop using a label supertonic

that immediately preceeds the loop-supertonic. The stop-supertonic’s label

subject specifies which enclosing level of labeled nested loop to exit to.

Evaluation continues immediately after the loop named for stopping.

If there are tonics that are never evaluated due to being jumped over

under any circumstance, that trips an unatonable condition.

Labels that are outside of the enclosing func-supertonic, or the enclos-

ing verbed-submediant, are not eligible destination labels, and will trip

an unatonable condition.

If the destination label is outside of an enclosing trap-supertonic, then

the finally-bars must still be evaluated.
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25 SUPERTONIC LOOP 25.2 Supertonic Next

25.2 Supertonic Next

Figure 25.3: Major Supertonic Next railroad diagram.
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Sometimes it is only necessary to evaluate a loop’s task only partially

and fast-forward to the subsequent iteration. The next-supertonic causes

the evaluation to fast-forward to the after-loop action of the immediately

enclosing loop without evaluating any of the bars subsequent the next-

supertonic. The loop further evaluates as normal.

Sometimes it is necessary to fast-forward an outer loop from within a

nested loop. The label’s name is also used for this purpose. The enclosing

loops are stopped up to the level of the loop named for fast-forwarding.

Then evaluation continues at the after-loop action of the named-loop. The

loop further evaluates as normal.

If there are tonics that are never evaluated due to being jumped over

under any circumstance, that trips an unatonable condition.

Labels that are outside of the enclosing func-supertonic, or the enclos-

ing verbed-submediant, are not eligible destination labels, and will trip

an unatonable condition.

If the destination label is outside of an enclosing trap-supertonic, then

the finally-bars must still be evaluated.
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25.3 Submediant Form

Figure 25.4: Submediant Loop railroad diagram.
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Part VI

Control Jump

26 Supertonic Trap

Figure 26.1: Major Supertonic Trap railroad diagrams.
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26 SUPERTONIC TRAP

The optional let-supertonic has the same purpose as in the if -supertonic.

The let-name allows the object to be used in the trap-handlers; whereas

objects constructed in the bars cannot be used in the trap-handlers.

If the let-name initializer trips a condition, then the immediate trap-

supertonic just introduced is able to catch it if it has the correct trap-

handler. This avoids requiring another enclosing level of a trap-supertonic

just for objects intended to be used by the trap handlers.

If the initializer trips a condition, then the let-name is not accessible.

Trying to access it from a trap-handler trips an unatonable condition. This

even applies to trap-handlers that coincidentally handle the same condi-

tion(s) that is/are tripped inside the bars. In those trap-handlers, trying to

access that let-name trips an unatonable condition.

The type or value of the condition specified must be known in present-

tense. Multiple-dispatch overload-pruning rules are implicitly applied to

find the best handler.

TOWEL is the recommended way to ensure clean-up operations are

always performed, however it may over-complicate the look of the code.

For example, maybe only local state needs to be set to a known state,

which will only require a few simple tonics, rather than a type that has to

be defined. These clean-up actions in the finally-score are always evalu-

ated, whether or not a condition was trapped.

The condition object can be pulled-in, and even participate in the TOWEL

round-trip as if it was pulled-out by the AM. This is useful for nested con-

ditions that need to provide specific evaluation status for diagnostic pur-

poses.

The AM tracks all conditions that can possibly be tripped while eval-

uating a func, and also those that are successfully trapped. Any trap-

handler specified that will never be encountered by the known set of pos-

sible conditions of a func trips an unatonable condition.

Not all conditions must be trapped, nor reported to be tripped. This
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reduces code clutter by removing the necessity for all funcs to account

for conditions that they have no meaningful action to perform.

26.1 Submediant Form

Figure 26.2: Submediant Trap railroad diagram.
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27 Supertonic Trip

Figure 27.1: Major Supertonic Trip railroad diagrams.
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Any object type can be a trip condition. All evaluations are aborted, all

TOWELs cleaned-up, until an enclosing trap-supertonic, with a relevant
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handler is found.

A trap-handler can trip a condition. Reasons to do this would include

translating an error to a more relevant, more specific, condition to relay

better information about the intent of an error. Or the handler merely

wishes to notify, or be notified, about a condition, but continue to pass it

on.

Present-tense values that are tripped as conditions must be handled

in present-tense, or else it trips an unatonable condition. Present-tense

conditions allow programmers to extend program correct-ness checks be-

yond language rules. API usage/semantic errors and regressions reported

in present-tense forces programmers to fix them as early as possible be-

fore they make it out into the wild.

28 Supertonic Give

Figure 28.1: Major Supertonic Give railroad diagrams.
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The presence of a give-supertonic causes the enclosing func to retain

its resumability.

Resumable funcs can give multiple evaluations before the final evalu-

ation. The given type must be compatible with the final evaluated type,
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29 SUPERTONIC WAIT

just like with eval-supertonics.

The func is always resumed after the give-supertonic last evaluated.

Bars enclosed by control-flow and control-jump supertonics inside sub-

mediant forms, are not allowed to contain give-supertonics.

29 Supertonic Wait

Figure 29.1: Major Supertonic Wait railroad diagrams.
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The presence of a wait-supertonic causes the enclosing func to retain

its resumability.

The func is always resumed at the subject of the wait-supertonic last

evaluated.

Bars enclosed by control-flow and control-jump supertonics inside sub-

mediant forms, are not allowed to contain wait-supertonics.

29.1 Minor Form

Figure 29.2: Minor Supertonic Wait railroad diagram.
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It is possible to wait on a tonic being evaluated to some object.
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30 Supertonic Goto

Figure 30.1: Submediant GoTo railroad diagram.
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Modern programming techniques eschew the need for unstructured

jumps for all reasons, including cleaning-up after handling an error. Some

workarounds are still worse than unstructured jumps, such as bailing out

of nested branches. Flags are required to orderly cascade out of nested

branches if there are no unstructured jumps, which could force the pro-

grammer to follow the logic in a sea of indentation. Some would argue

that branches should not be so nested in the first place.

A simple two-level nested branch that requires a quick exit is signifi-

cantly more messy using flags, so the goto-supertonic is the last vestige of

unstructured jumps that can still be used for this purpose.

When jumping from a nested structure, all let-names with TOWEL in

the enclosing levels up to the level of the destination is destroyed. Evalu-

ation continues at the destination label.

Labels that are outside of the enclosing func-supertonic, or the enclos-

ing verbed-submediant, are not eligible destination labels, and will trip

an unatonable condition.

If the destination label is for an enclosing loop, the evaluation does

NOT behave like a next-supertonic. Evaluation continues from before the

loop.

If the destination label is outside of an enclosing trap-supertonic, then

the finally-bars must still be evaluated.

If an evaluation jumps past a let-supertonic, trying to access that let-
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30 SUPERTONIC GOTO

name trips an unatonable condition. This is one of the dangers of unstruc-

tured jumps. The other control-flows and jumps ensure that all clean-up

and let-supertonic evaluations happen properly. This avoids the problem

of having let-names that have no object altogether.

If there are two viable destination labels with the same qtom, regard-

less of nesting level, this trips an unatonable condition. Let-names can

shadow other let-names from enclosing scopes because the rules for name-

search are simple enough to follow. Jumps, on the other hand, can get

very messy to follow at the best of times, so allowing labels to shadow

would lead to complete spaghetti.

If there are tonics that are never evaluated due to being jumped-over

under any circumstance, that trips an unatonable condition.
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Part VII

Generic
Liskov/Wing Subtype Requirement is defined as follows8:

Algorithm 1 Let ϕ(x) be a property provable about objects x of type T .

Then ϕ(y) should be true for objects y of type S where S is a subtype of T .

Liskov sub-typing is not to be confused with inheritance. Inheritance

can be used to model sub-typing, but sub-typing is about purpose, not ge-

nealogy. Inheritance is its own operation that incidentally overlaps with

the purpose of sub-typing. To wit: a sub-type relationship can exist with-

out inheritance.

Pastry is a general type of food. Doughnuts and croissants are a spe-

cific type - a sub-type - of pastry. The sub-type relationship is a categoriza-

tion. There isn’t inheritance in the way that you or I inherit the genetic

information from our respective biological parents. In code, we may use

inheritance to represent pastry, doughnut, and croissant; but an alterna-

tive would be to infer a sub-type relationship in the present-tense. We

consider them pastries because they have the same core ingredients and

are baked with similar methods.

Sub-typing, whether inferred or inherited, is both a constraint on the

relevant and provable properties of a type, but also a promise to not de-

mand of a type beyond what was explicitly required and provable.

Take the classic problem of Rectangles and Squares. A Square IS-A

Rectangle where the height and width are the same; so a straightforward

representation of that relationship would be for a Square type to inherit

from a Rectangle type. The Square will necessarily override behaviour to

maintain the equivalence of height and width.

8https://doi.org/10.1145%2F197320.197383
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One argument9 goes that Square isn’t a proper sub-type of Rectangle

because the behaviour of a Rectangle - that height and width can be mod-

ified separately - is not preserved by Square. Such behaviour isn’t some

temporary internal state, but externally observable behaviour10.

What that analysis misses is that the Liskov/Wing subtype require-

ment specifically requires “provable” properties. Taken in its most com-

pact formulation, there is no mention of accounting for all properties, all

observable behaviour, in every situation. The idea that height and width

of a Rectangle-like type are independent is not actually provable, even if

no sub-typing is involved. After-all, the simplest mathematical descrip-

tion of a Rectangle does not address mutability. The most basic guarantee

of a Rectangle-like shape is that it has four sides at right-angles, and from

that follows the area is height × width and the perimeter is 2 × (height +

width).

Squares sub-type of Rectangles actually demonstrates why sub-typing

is distinct from inheritance. A Square has no need of both a height and

width, yet inheriting from Rectangle would make them mandatory. One

can imagine an algorithm that takes a buffer of Rectangle-like objects. An

algorithm that demands inheritance from Rectangle, rather than being

an inferrable sub-type of a Rectangle, will force a buffer of Squares to be

a buffer of Rectangles, either doubling the space-cost by having to keep

everything a Rectangle-derived type, or a time-cost of having to convert

between Rectangles and Squares. An inference-based sub-typing scheme

eliminates both costs entirely.

The moral of the story is there are no single set of properties that will

fulfill the Liskov/Wing sub-type requirements for all uses. A base-type has

its own set of provable properties that it expects of its derived types. Algo-

rithms have their own set of properties they require provable. These sets

may not always be proper subsets of each other, especially in the case of

9"The Real Problem"
10https://web.archive.org/web/20230314234519/https://www.hyrumslaw.com/
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31 LISKOV-LIKE EQUIVALENCE

multiple inheritance. When modelling the real world, categories overlap,

which is not something that inheritance can efficiently represent, neces-

sitating a separate mechanism for specifying sub-type relationships.

31 LIskov-liKe Equivalence

Composition establishes a HAS-A relationship. Inheritance establishes

an IS-A relationship. Sub-typing is a much broader relationship and de-

mands a similarly broad capability to establish the relationship. TONAL

mediant forms achieves sub-typing by introducing the LIKE-A relation-

ship that enables a programmer to say more precisely what they mean

when something should be “like a” type. LIKE is an acronym for “LIskov-

liKe Equivalence”.

It may seem like a good idea at first to enforce that the only allowed op-

erations on an object are those that are entirely specified by the mediant,

but that would actually hinder the ability to make code generic. Algo-

rithms are divided into somewhat independent constituent algorithms,

perhaps each with their own sub-typing requirements, such as stricter

constraints that allow optimized specializations. It would be difficult if

not impossible for the higher levels of an algorithm to know all special-

izations of its constituent algorithms.

Nevertheless, mediants are present-tense objects in their own right, so

predicate funcs can be composed appropriately to cover the entire space

of constituent algorithm requirements if so desired.

In limited cases, requirements about stateful behaviour can be cap-

tured as present-tense programs operating on present-tense objects. A

func can indeed document when it needs a rectangle-LIKE object to have

independent height and width, without impacting all rectangle subtypes

to require this property. This is limited in the sense that it cannot guaran-

tee the behaviour is preserved in future-tense, but a programmer would
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have to go out of their way to cheat the system by providing a special be-

haviour just to get around present-tense constraints.

All mediants must be able to run in present-tense, otherwise it trips

an unatonable condition. Once a subtyping relationship is proven on a

type, or even a value, the AM can optimize away future encounters of the

mediant/type-or-value.

Mediants can view let-names outside of itself, but TOWEL round-trip

is disabled for those let-names because it would be too confusing to allow

the state of a program to change in present-tense when we’re just trying

to verify a type or object’s LIKE-ness. Let-names introduced inside the

mediant are not restricted, since there could be some useful sub-typing

properties that capture the transfer of TOWEL.

Mediants are the primary way to programmatically prune overloads.

The mediant operates on one overload at a time, as controlled by the AM.

The name of the mediant, whether introduced by a let-supertonic, or a

Tensah parameter subtonic, is the let-name by which the current overload

candidate is accessed. Mediants communicate with the AM by tripping

atonable conditions to control overload pruning in an application/domain

specific manner. Candidates that survive this pruning process are consid-

ered LIKE the what mediant describes.

Named mediants cannot be overloaded, since there are no parameters,

other than the implicit overload set. Names that overload a mediant - of

any archetype - trip an unatonable condition.
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32 Mediant Func

Figure 32.1: Mediant Func railroad diagrams.
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33 Mediant Type

Figure 33.1: Mediant Type railroad diagram.
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Part VIII

Hyperspace

Table 12: Foreign Function Interface keyverbs
@@func
@@infx
@@tool
@@tune
@@type
@@utf8

TONAL code lives in normal space, which has TOWEL, name-search,

and overload-pruning rules. Jumping into hyperspace allows access to

the underlying universe of the AM and abandoning the rules of TONAL

space. Hypertonics are the supertonic-equivalent in hyperspace11.

It is too easy to end up writing entire blocks of code in the AM-native

language, so to dissuade the creeping of bloat, hypertonics are limited to

calling AM-native functions, and not simply writing arbitrary amounts of

AM-native code. Hypertonics thinly wrap AM-native code - enough for the

use of normal TONAL constructs to impart TONAL space semantics to the

wrapped entities. This makes it easier to avoid errors trying to recreate

TONAL-space semantics in AM-native code.

TONAL does not specify the AM-native language, although C99 is the

machine model the TONAL AM is based on. C99 is chosen because the ma-

chine model is simple, mostly forwards compatible with later standards,

and compilers are mature. The C99 features allowed in the implementa-

tion are those allowed by CompCert C compiler. This means any program

generated by a TONAL AM can be compiled by CompCert C, even if other

compilers are used for normal development. C99 can also be compiled to

WASM, for browser based environments.

11They can also be used to tame lions.
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34 HYPERTONIC FUNC

TONAL does not use C++ because its RAII and template semantics are

not a fitting match for TONAL’s TOWEL and mediant semantics.

The lack of AM-native language specification allows compatible im-

plementations on varied environments, like the Java, Javascript or .NET

virtual machines, as well as compute modules, like OpenCL, SPIR-V, CUDA,

etc.

34 Hypertonic Func

Figure 34.1: Hypertonic Func railroad diagrams.

HypertonicFunc

@@func ArcheType NativeType NativeName

HypertonicRet

HypertonicArg

NativeType

Qtom

NativeName

Qtom

ArcheType

long

real

atom

”

a

a” is an empty string, signalling void

TONAL objects going into a native function’s arguments needs to be
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34 HYPERTONIC FUNC

converted from a TONAL archetype to the function’s parameter’s type.

Native objects returned from a native function needs to be converted

from the native return type to a TONAL archetype.

Archetypes are used to interface between native and TONAL code to

enable the implementation of present-tense native functions, as with the

hypertonics library.

The native function’s name is the mangled-name used in native libraries

for linking. This avoids the need of having to include native headers or

import native modules in the hypertonic syntax. This means it is techni-

cally possible to interface with C++ code by calling the mangled name of

a function. Care must be taken to understand the ownership semantics of

the C++ function’s parameters and return value.

It is preferred to use C-bindings for C++ code rather than C++ code di-

rectly, since the C-binding will presumably have accounted for C++ object

lifetimes. C-bindings also have the advantage of being able to shepherd

C++ exceptions into archetype compatible values for tripping conditions.

Figure 34.2: Hypertonic return value reference railroad diagram.

HypertonicRet

@@ret ArcheType NativeType

a

a

The TONAL principle is to always have funcs evaluate to a value, with

errors and statuses reported via tripping a condition. Some native func-

tions have output parameters instead of returning a value, with the return

value being used to report error codes.

Native functions can participate in the TOWEL round-trip by construct-

ing its output parameter in the place where the TONAL evaluation will

reside, instead of copying or moving a value.
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35 HYPERTONIC INFX

Figure 34.3: Hypertonic argument reference railroad diagram.

HypertonicArg

@@arg ArcheType NativeType ParameterIndex

a

a

The wrapping TONAL func’s arguments are referenced by position,

starting at 0. The wrapping TONAL func may have pack arguments as

long as no argument reference exceeds the number of arguments.

Pack arguments cannot be unpacked for the hypertonic, and are not

usable for C variable argument lists. Arguments in a pack are referenced

by position just like normal arguments.

35 Hypertonic Infx

Figure 35.1: Hypertonic Infx railroad diagram.

HypertonicInfx

@@infix NativeType Operator HypertonicArg

HypertonicArg

a

a

TONAL does not have the concept of mathematical operators: all math-

ematical operations are merely funcs. The infx-hypertonic avoids having

to write AM-native shim functions that use operators.

Prefix unary operators are chosen if only one hypertonic argument is

provided. There is no support for postfix operators.
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36 Hypertonic Tool

Figure 36.1: Hypertonic Tool railroad diagrams.

HypertonicTool

@@tool ToolId

ToolFlag

ToolId

Qtom

ToolFlag

BoundName

Literal

MinorTonic

a

a

Some development processes are better left to dedicated tools. Even

though TONAL is designed to be much simpler to parse, and the TONAL

collection provides parsers, it isn’t very productive to expect to program-

mers to have to fully parse a program just to gather a small bit of statistics.

Too much analysis can also slow build times and therefore rapid proto-

typing, so it’s more productive to do extra analysis on the side every so

often, instead of every build.

Rather than simply dumping out compiler internals like incomplete

syntax trees or other data structures, the tool-hypertonic enables pro-

grammers to dump out the exact data they need in the exact format they

need. No need to dig through documentation of some obscure file-format.

Any present-tense value can be passed along to the tool.

Common uses for external tools include: documentation/diagram gen-

erators; project-specific library/interface usage and pitfall analysers; correct-
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ness provers; deadlock finders; callgraph summarizers; code generators

for other languages; translation cataloging; and many more.

The external tool is specified by some ID, rather than by an executable’s

actual name. It avoids complicating the TONAL AM and build processes

by requiring that command-line options be supplied for search paths, etc.

It also enables a project to be more flexible, such as using the same ID to

run a tool with different analysis options, different versions of the tool,

and of course different tools. Altogether.

Using a tool ID, rather than an executable name or command line, re-

duces the need to change the hypertonic, causing recompiles and possibly

even cause version control churn.

Tools are not applied in present-tense. The tool-hypertonic merely out-

puts the tool ID and the values provided. The tools are applied on the tool-

hypertonic output when the project’s chosen build system runs them.

One of TONAL’s paradigms is to avoid a mish-mash of languages - ev-

erything is described by one source language - to make it easy to manage

a project with minimal mental context-switching, and textual traceability

of names. The tool-hypertonic breaks this paradigm, but it is acceptable

in this case precisely because it explicitly bridges TONAL source with tool

usage which maintains textual traceability.
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37 Hypertonic Tune

Figure 37.1: Hypertonic Tune railroad diagrams.

HypertonicTune

@@tune TuningFlag

TuningFlag

BoundName

Literal

MinorTonic

a

a

Music exists on a score, but needs to be played on an instrument to be

heard. Instruments need to be tuned to the correct keys for the music to

be played as intended. Some instruments can have alternate tunings to

allow music to be written for unconventional key signatures.

Tunings do not modify the behaviour of a TONAL program. They are

used to tweak the generated executable for time or space performance.

Some tweaks can include: AM-level optimizations, such as data align-

ments; inlining, such as present-tense pruning vs future-tense switch-

ing and dummy arguments or variadic arguments; consolidation; teleme-

try code; machine and platform specific generation, such as hypertonic

AM-language, operating system versions; execution hints, such as likely

branches.
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38 Hypertonic Type

Figure 38.1: Hypertonic Type railroad diagram.

HypertonicType

@@type NativeName

a

a

When referring to C struct or enum types, the native name must be

preceded by struct or enum, just like in C, when not using typedefs. For

other AM-languages, the respective language rules are followed also.

C does not have the concept of member functions like in C++, so func-

hypertonics enclosed by a type that is defined by a type-hypertonic must

pass the @object to the native func explicitly. C structs do have data mem-

bers, so TONAL types that are hypertonic structs can only have enclosed

objects whose let-names are exactly the same as the C struct’s members,

and have the same hypertonic type.

39 Hypertonic Utf8

Figure 39.1: Hypertonic Utf8 railroad diagram.

HypertonicUtf8

@@utf8 Qtom

a

a

Writing arbitrary native code in TONAL defeats the purpose of TONAL-

space. For TONAL implementations, however, features requiring native

language, operating system, or machine support may require the ability

write inline native code.
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39 HYPERTONIC UTF8

This capability is reserved for TONAL implementations only, and use

outside of TONAL provided libraries trips an unatonable condition.
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Part IX

Libraries
Powerful systems programming languages does not do everything, but

anything can be done with it. Languages like LISP and C++ achieve this

by being a language to implement libraries.

40 HYpertonic Present-tense Elements

Languages cannot be turtles all the way down. The Hypertonic Present-

tense Elements library is the last turtle, standing on top of the AM. The

AM can theoretically be implemented in any language, and the HYPE li-

brary does the dirty work of translating TONAL’s semantics onto the AM

implementation language.

Implementing as much of the language as a library simplifies the com-

piler development and maintenance process. The compiler then only needs

to understand the scale-degrees, then generate code, then execute the

generated code, in present-tense.

Every item in the HYPE library forms the backbone of the present-

tense programming. They are the archetypes and the conditions tripped

by the AM if there are ambiguities, inconsistencies, or errors, in the pro-

gram’s definition. They do not have a fixed machine representation since

they are present-tense and are discarded from the final executable, even

if a type is derived from them.

41 Grand Unified Toolkit of Generally Useful Things

The GUT builds on top of the HYPE library and provides concrete repre-

sentations of the archetypes. Most things in the GUT library are usable
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in present-tense. The GUT library provides the guts of the language and

every conceivable application.

The GUT identifies common tendencies in data structures and algo-

rithms that occur in any interesting program. Such structures and algo-

rithms are so common that TONAL and GUT should also utilize them itself.

Dogfooding brings to light any gaps in generality or concrete implemen-

tation.

The toolkit design encourages the definition of highly modular and ex-

tremely composable units. Makers use whatever tools are available to put

systems together in any way imaginable. The more generalized and self-

contained the design of these tools, the greater number of combinations

is achievable, without having to be explicitly designed into the library.

This stands in opposition to framework designs. A framework is a

mostly complete thing. It is a black box with holes in which programmers

plug-in their own customizations, but the overall activity of the frame-

work is unchanged. They are, by design, not really composable with other

frameworks, and tend to be hard to use components as individual mod-

ules.

Memory pool. Cache awareness. Copy-on-Write. Persistency. State

machines. Parsers. Generators. Actors. Serialization. Maths (algebraics,

numerics).

41.1 TONALly Legible Data Representation

The experience of Javascript Object Notation shows a great need to have a

succint, but readable, data representation format within a language itself.

The experience of JSON also shows that there is a lot of value in XML’s S-

expression design.

TONALly Legible Data Representation is the native format for all kinds

of transport in TONAL. Even the TONAL compiler and other parts of the

ecosystem would use TLDR as a communication and storage format. TLDR
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is natively supported even as a present-tense TONAL source when in-

cluded as such.

41.2 System Entities and Hypertonics Repository

Useful programs do things that have side-effects, which means invoking

some platform functionality: future-tense. The platform could be an oper-

ating system, or it could be the direct hardware, or it could be a simulator

or emulation of some sort.

TONAL is a cross-platform language, but platforms differ wildly. The

aim of the SEHR library is to represent any platform’s primitives faithfully

within TONAL types. When a platform’s semantics is faithfully exposed

to TONAL, then the present-tense facilities of TONAL can be used to ac-

curately reflect on specialized behaviour and produce high-quality gen-

eralized types. This includes any versioning differences on the platform

side.

IO. Concurrency. Memory mapping. Signals. Events. Interrupts. Co-

processing. Dynamic linking.

41.3 Common Appliance Toolkit

Beyond data structures and algorithms, there are some larger-scale or-

ganizational principles that arise from time to time. A kitchen has uten-

sils like knives, forks, spoons, pots, pans, spatula, but also appliances like

toasters, fridges, blenders, stoves, ovens, rice cookers. Likewise produc-

tivity applications have a few commonly used subsystems that perform

more complex, less formal, functionality.

CRUD. Scheduler. Edit history. GUI. Client/server. Peer. Settings. Work-

flow. Entity-Component. Command history. Notifications.
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41.4 Microcosm of Basic Input and Output Modular Exe-

cutables

The UNIX model showcases the power of single-purpose command-line

tools that takes input of one format and churns output in another format.

The major problem with those command-line tools is that they were

designed only with command-line in mind, so they are only usable from

shell-scripts. The next major problem is portability due to a lack of stan-

dard surrounding syntax of arguments and input and output formats.

The MicroBIOME is a project to utilize the full power of TONAL li-

braries - GUT, TLDR, SEHR and CAT - to formally specify a suite of script-

ing tools as a library of code. There are high level processes common to

many programs, such as pipelines of data processing, dependency man-

agement, continuous integration, platform management, version control,

scripting environments, etc. Making them available as code gives TONAL

the power of scripting, while giving tooling the power of verification.

41.5 Future Extension Experimental Library

The experience of C++ shows the benefits of disciplined, considered, suc-

cession plan. Good standards need good implementations. Standards

don’t get implemented. No one commits to implementations without a

standard. The FEEL library is the fertile ground for which serious experi-

ments in new types and libraries get official support, with an eye towards

eventual standardization.

There will never be two libraries doing the same thing, but there will

be constant competition to supplant lesser-quality libraries with better

ones.

Two libraries may approach the same problem with different strate-

gies. Effort should be made to analyse all approaches and whether there

can be a unified approach and/or a common core that would be useful
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outside of the two approaches. The unified approach should not be much

more complex than either individual libraries.

Standard - must have backwards compatibility tests and migration tools

for ABI breakages.

Proposal - must have conformance tests.

Experimental - go wild.

42 Standards

Software must ultimately be interoperable with the real world, whether

they be people, machines, or software, new and old. It is an important

goal of TONAL to have official libraries for internationally recognized

standards, or lacking standards, the closest things to standards coming

from various industry consortiums.

The lack of libraries that check for errors in standards application in

present-tense has cost hundreds of millions of dollars in accidents. Stan-

dards libraries should be designed in such a way as to map to the stan-

dards themselves as directly as possible. This further reduce errors by

reducing friction between the library’s usage and the standard’s text.

All libraries should document the source of its information.

These libraries inform the general design of GUT libraries. For the

purposes of traceability, every generally-useful component of a standard

should be developed in the respective STD library, and then identified as

being generally-useful, and migrated or design-merged into a GUT library.

Not wrappers over sockets or network stacks, but a replacement. Drivers.

Operating Systems. Packet sniffers. Diagnostics. Simulators.
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42.1 SI units (International Bureau of Weights and Mea-

sures)

Figure 42.1: International System of Units library layout.

Type Description Specification Version

SI.units

The symbols that make up

the SI units, and prefixes.

Symbolic unit dimensional

analysis.

2022 9th edition

SI.constants
The seven defining

constants, and their symbols.
2019 9th edition

SI.compatibility
Unofficial units within SI

usage.
2019 9th edition

SI.USA Units and constants for

converting to the SI system.

2019

SI.UK 2019

The BIPM brochure for the SI units contains rules about displaying as text

that should be implemented.
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42.2 ISO standards

Figure 42.2: ISO Standards library layout.

Type Description Specification Version

ISO.quantities

International System of

Quantities.

Formatting rules.

Symbolic unit dimensional

analysis.

ISO-80000 2022

ISO.datetime
The one true date/time

format.
ISO-8601 2022

ISO.languages
2 and 3 letter language

codes.
ISO-639 2010

ISO.countries
Country codes and

subdivisions.
ISO-3166 2020

ISO.currencies
Alphabetic and numeric

currency codes.
ISO-4217 2015

ISO.paper

A and B Series of paper sizes. ISO-216 2007

Raw A sizes. ISO-217 2013

C Series - envelope sizes.

Withdrawn, but implement

for remaining usage.

ISO-269 1985

Hole punch. ISO-838 1974

ISO.Unicode
Only character set supported

by TONAL.
ISO-10646 2020

ISO.Z Formal verification support. ISO-13568 2007

ISO.IS??

ISAN. Audiovisual Number. ISO-15706 2008

ISBN. Book Number. ISO-2108 2017

ISIL. Identifier for Libraries.

Libraries, archives,

museums.

ISO-15511 2019

ISMN. Music Number.

Printed music.
ISO-10957 2021

ISNI. Name Identifier.

Contributors to media.
ISO-27729 2013

ISRC. Recording Code. Sound

and music video recordings.
ISO-3901 2019

ISSN. Serial Number. For

serial publications.
ISO-3297 2022

ISTC. Text Code. Text-based.

Withdrawn, but implement

for remaining usage.

ISO-21047 2009

ISWC. Musical Work Code.

For collections.
ISO-15707 2022

ISO.QR
QR codes. ISO-18004 2015

Micro QR codes. ISO-23941 2022203
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42.3 Ecma standards

Figure 42.3: Ecma Standards library layout.

Type Description Specification Version

Ecma.terminal

Control character sequences

for VT-100, VT-220, VT-420

terminals and emulators.

ECMA-48 5th edition

Ecma.JSON Parsing only. ECMA-404 2nd edition

Ecma.Script
EcmaScript. Strict, no

polyfills.
ECMA-262 13th edition

Ecma.CD

Read and generate CD

images.
ECMA-168 2nd edition

Universal Disk Format. ECMA-167 3rd edition

42.4 IEEE standards

Figure 42.4: IEEE Standards library layout.

Type Description Specification Version

IEEE.float

binary16 to binary256.

decimal 32 to

decimal128.

Recommended functions.

Textual conversions.

IEEE-754 2019

IEEE.interval

Floating point interval

arithmetic.

Error bounds and

reliable testing.

IEEE-1788 2015

IEEE.Ethernet
Low level networking.

IEEE-802.3 2022

IEEE.WiFi IEEE-802.11 2022

IEEE.JTAG Hardware debugging. IEEE-1149.1 2013

IEEE.VHDL Programmatically

generate hardware from

TONAL.

Parse to generate

bindings to hardware, or

emulations.

IEEE-1076 2019

IEEE.SystemVerilog IEEE-1800 2017

IEEE.PSL

Property Specification

Language.

Hardware verification.

IEEE-1850 2010

IEEE.POSIX Issue 7. IEEE-1003.1 2017

IEEE.RTOS µT-Kernel. IEEE-2050 2018
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POSIX and RTOS library may range from simple interface bridging, to API

compatibility layer for emulation or testing purposes.

42.5 IETF

42.5.1 Internet standards

Figure 42.5: IETF Internet Standards library layout.

Type Description Specification Version

IETF.STD.UTF-8

UTF-8 is the only character

encoding used in TONAL.

UTF-8 everywhere.

STD-63

IETF.STD.PPP

A reasonable modern

network stack for

implementing services,

streams, and clients, at all

levels of the internet.

STD-51

IETF.STD.IP
STD-5 4

STD-8[6-9] 6

IETF.STD.UDP STD-6

IETF.STD.TCP STD-7

IETF.STD.RTP STD-64

IETF.STD.DNS STD-13

IETF.STD.HTTP STD-9[7-9] 1.1

IETF.STD.POP STD-53 3
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42.5.2 Proposed standards

Figure 42.6: IETF Proposed Standards library layout.

Type Description Specification Version

IETF.RFC.SOCKS
Proxy protocol. RFC-192[8-9] 5

GSS-API authentication. RFC-1961

IETF.RFC.MIME
Classify file types

generally.

RFC-204[5-7,9]

RFC-4289

IETF.RFC.DHCP IP assignment.
RFC-2131 4

RFC-8415 6

IETF.RFC.SLP
Service Location

Protocol.
RFC-2608 2

IETF.RFC.IGMP IP multicast groups. RFC-3376 3

IETF.RFC.Kerberos Secure authentication. RFC-4120 5

IETF.RFC.UUID

Name mangling that’s

reasonably quick and

unique for all kinds of

linking.

RFC-4122

IETF.RFC.SSH Secure tunnelling. RFC-425[0-4]

IETF.RFC.BGP

Border Gateway Protocol

for Classless

Inter-Domain Routing

RFC-4271 4

IETF.RFC.LDAP
Organizational directory

services.
RFC-4510

IETF.RFC.Base64

Base 16, 32, and 64

encoding.

Prefer URL safe.

RFC-4648

IETF.RFC.PGP
OpenPGP Message

Format.
RFC-4884

IETF.RFC.WebDAV
Document editing over

HTTP.
RFC-4918

IETF.RFC.SMTP Mail messaging. RFC-5321

IETF.RFC.message
Internet Message

Format.
RFC-5322

IETF.RFC.XMPP
Open real-time

messaging.
RFC-6120

IETF.RFC.RPC Basis for NFS. RFC-5531 2

IETF.RFC.NFS
Transparently access file

servers.
RFC-786[2-3] 4.2

IETF.RFC.TLS Encrypted connections. RFC-8446 1.3

IETF.RFC.IMAP Mail management. RFC-9051 4

IETF.RFC.NTP Accurate time keeping. RFC-9109 4

IETF.RFC.HTTP
Future compatibility

with the WWW.

RFC-9113 2

RFC-9114 3

IETF.RFC.SCTP

Stream Control

Transmission Protocol.

Telephony.

RFC-9260

IETF.RFC.REP
Robots Exclusion

Protocol.
RFC-9309
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42.5.3 Informational

Figure 42.7: IETF Informational RFCs library layout.

Type Description Specification Version

IETF.RFC.ZLIB Compressed file format. RFC-1950 3.3

IETF.RFC.DEFLATE
Common compression

scheme.
RFC-1951 1.3

IETF.RFC.GZIP
Common compressed file

format.
RFC-1952 4.3

IETF.RFC.PNG
Common image

compression.
RFC-2083

IETF.RFC.UTF-16
Less common unicode

encoding.
RFC-2781

IETF.RFC.CSV
Quick and dirty tabular

data.
RFC-4180

Informational RFCs, mostly about file formats and data encodings, imple-

mented to consume files in those formats and encodings. For producing,

TONAL will settle on newer, more standard, more performant formats

and encodings.

42.6 ITU recommendations

Figure 42.8: ITU Recommendations library layout.

Type Description Specification Version

ITU.UTC Definition of standard time. TF.460 2002

ITU.ASN.1
Specify binary format

layouts.

X.68[0-3] 2021

X.69[0-7] 2021

ITU.UHDTV 8K and 4K TV standard. BT.2020 2015
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42.7 NIST standards

Figure 42.9: NIST Standards library layout.

Type Description Specification Version

NIST.constants

Constants and units for

physical properties, with

error bounds.

CODATA-2018 2021

NIST.AES
Strong symmetric

encryption.
FIPS-197

NIST.DSS Digital signatures. FIPS-186 5

NIST.HMAC Hash authentication. FIPS-198 1

NIST.SHA

SHA-3 FIPS-202

SHA-224 to SHA-512 FIPS-180 4

SHA-1 FIPS-180 4

42.8 OASIS standards

Figure 42.10: OASIS Standards library layout.

Type Description Version

OASIS.RELAX-NG
Schema language for a lot of

standards.
3

OASIS.OpenDocument
Office productivity authoring and

interchange.
1.3

OASIS.DocBook Technical manual authoring. 5.1

OASIS.AMQP Enterprise messaging. 1.0

OASIS.MQTT Embedded device messaging. 5

OASIS.PKCS
Cryptographic Message Syntax. 7

Cryptographic hardware API. 11

OASIS.SAML Single Sign On. 2.0
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42.9 W3C recommendations

Figure 42.11: W3C Recommendations library layout.

Type Description Specification Version

W3C.XML

Hierarchical document

structure and interchange.
1.0 5th edition

Namespaces 1.0 2nd edition

XInclude 1.0 2nd edition

Information Set 2nd edition

id

Base 2nd edition

W3C.XQuery

Hierarchical database

querying.
3.1

XQueryX 3.1

XPath 3.1

XQuery 3.1

XQuery and XPath Data

Model
3.1

XPath and XQuery Functions

and Operators
3.1

XSLT and XQuery

Serialization
3.1

XQuery and XPath Full Text 3.0

XQuery Update Facility 1.0

W3C.WASM Core 2.0 2023-01-18

JavaScript Interface 2.0 2022-04-19

Web API 2.0 2022-04-19

WASI Snapshot.

W3C.RDF Knowledge tagging. 1.1

W3C.WOFF Web fonts. 2.0

W3C.CSS Decoupled visual styling. 3

W3C.SVG Vector graphics. 2

W3C.WebCGM Technical vector graphics. 2.1

W3C.SCXML State machine language. 1

W3C.MathML

Mathematical formula

representation and

formatting.

3.0 2nd edition

W3C.EPUB Electronic books. 3.2
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42.10 WHATWG Living Standards

Figure 42.12: WHATWG Standards library layout.

Type Description

WHATWG.WebIDL
Programmatic description of

interfaces.

WHATWG.URL Web address.

WHATWG.DOM Document model.

WHATWG.HTML
Document semantics and

presentation.

WHATWG.WebSockets
Efficient persistent web

connections.

42.11 Industry consortiums

42.11.1 Khronos

Figure 42.13: Khronos Standards library layout.

Type Description Version

Khronos.SPIR-V
Shader language intermediate

representation.
1.6

Khronos.OpenCL GPU compute. 3.0

Khronos.Vulkan
Low level 3D graphics. 1.3

SC. For high reliability vehicles. 1.0

Khronos.WebGL OpenGL profile for web. 2.0

Khronos.EGL OpenGL and native integration. 1.5

Khronos.COLLADA 3D modelling assets. 1.5.0

Khronos.glTF 3D asset transfer. 2.0

Khronos.KTX Texture container for distribution. 2.0
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42.11.2 Bluetooth

Figure 42.14: Bluetooth Standards library layout.

Type Description Version

Bluetooth.Core
Short-range wireless peripheral

communications.
5.3

42.11.3 HDMI

Figure 42.15: HDMI Standards library layout.

Type Description Version

HDMI Audio/Video transmission. 2.1

42.11.4 USB

Figure 42.16: USB Standards library layout.

Type Description Version

USB Peripheral communications.

4

3.2

2.0

42.11.5 JEITA

Figure 42.17: JEITA Standards library layout.

Type Description Version

JEITA.Exif Camera media format. 2.32
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42.11.6 Xiph.Org

Figure 42.18: Xiph library layout.

Type Description Specification Version

Xiph.Ogg Audio/Video container format. RFC-3533 0

Xiph.Vorbis Audio lossy compression. I

Xiph.Opus
Audio lossy compression

supplanting Vorbis.
RFC-6716

Xiph.FLAC Audio lossless compression. 1.4.2

42.11.7 Matroska

Figure 42.19: Matroska library layout.

Type Description Specification Version

Matroska.EBML Binary XML. RFC-8794

Matroska.MKV
Audio/Video container

format.

1.63

WebM

42.11.8 AOMedia

Figure 42.20: AOMedia Standards library layout.

Type Description Version

AOMedia.AV1
High performance video

compression.
1.0.0

AOMedia.AVIF Image format based on AV1. 1.1.0
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42.12 Vendors

42.12.1 Linux

Figure 42.21: Linux library layout.

Type Description Version

Linux.ELF Executables.

Linux.DWARF Debugging information. 5

Linux.io_uring Asynchronous IO.

Linux.epoll Event notification.

42.12.2 BSD

Figure 42.22: BSD library layout.

Type Description

BSD.kqueue Event notification.

42.12.3 Microsoft

Figure 42.23: Microsoft library layout.

Type Description Specification Version

Microsoft.IOCP Asynchronous IO.

Microsoft.fiber
Lightweight

concurrency.

Microsoft.OpenType Common font format. 1.9

Microsoft.BMP
Common lossless

raster format.

Microsoft.PE Executables. 2022-24-06

Microsoft.OOXML
Read MS Office

documents.
ECMA-376 5th edition

Microsoft.XPS
Read printable

documents.
ECMA-388 1st edition
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42.12.4 MacOS

Figure 42.24: MacOS library layout.

Type Description

MacOS.Mach-O Executables.

MacOS.dispatch Lightweight concurrency.

42.12.5 OpenMP

Figure 42.25: OpenMP library layout.

Type Description Version

OpenMP Parallel annotations 5.2

42.12.6 Adobe

Figure 42.26: Adobe library layout.

Type Description Specification Version

Adobe.Postscript
Document printing

language.
3

Adobe.PDF

-/A, -/E, -/R, -/X, -/UA, -/VCR,

-/VT.

Archiving, engineering,

raster, printing, accessibility.

ISO-32000 2.0

ECMAScript for PDF. ISO-21757 2.0

Adobe.XFDF XML Forms Data Format. ISO-19444 3.0

Adobe.XMP
eXtensible Metadata

Platform
ISO-16684 2021

42.12.7 ILM

Figure 42.27: ILM library layout.

Type Description Version

ILM.OpenEXR Deep raster images. 3.1
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42.12.8 QOI

Figure 42.28: QOI library layout.

Type Description Version

QOI
Performant lossless image

compression.
1.0

42.12.9 7z

Figure 42.29: 7z library layout.

Type Description

7z Archive format.

7z.LZMA Archive compression algorithm.

42.12.10 BitTorrent

Figure 42.30: BitTorrent library layout.

Type Description Specification

BitTorrent Peer-to-peer file mirroring protocol. BEP-3

BitTorrent.DHT Distributed Hash Table. BEP-5

BitTorrent.tracker UDP tracker. BEP-15

BitTorrent.uTP UDP-base protocol. BEP-29

42.12.11 SQLite

Figure 42.31: SQLite library layout.

Type Description Version

SQLite
In-memory database and

interchange.
3
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42.12.12 Princeton

Figure 42.32: Princeton library layout.

Type Description Version

Princeton.WordNet Dictionary with API. 3.0
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